1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
2 years ago
9

Express the following ratio in the simplest form2kg 250g :5kgplease give me answer​

Mathematics
2 answers:
Semmy [17]2 years ago
8 0

Step-by-step explanation:

5kgthe following ratio in the simplest form

katrin [286]2 years ago
5 0

Answer:

Below.

Step-by-step explanation:

2 Kg : 250g : 5 kg

Convert all to grams:

= 2000 : 250 : 5000

= 200 : 25 : 500

= 8:1:20.

You might be interested in
What is the least common denominator for the fractions 56and38?
maw [93]

Answer:

The least common factor is 18

Step-by-step explanation:

  • what you need to do is subtract 56 - 38 = 18
  • It would 56/18 and 36/18

  • Hope this helps
  • Hope this is right
  • Ask me questions

7 0
3 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
An account earns simple interest.<br> $1675 at 4.6% for 4 years
Paul [167]

Answer:

$308.20

Step-by-step explanation:

The simple interest formula i = p·r·t applies here:

($1675)(0.046)(4) = $308.20

5 0
2 years ago
A right triangle has legs of lengths 19 and 10 inches. Find the length of
AnnZ [28]

Answer:

21.5

Step-by-step explanation:

19^2+10^2=461

square root of 461 =21.47091055

round to the nearest tenth to get 21.5

7 0
2 years ago
Read 2 more answers
Which of the following pairs of numbers contains like fractions?
Harrizon [31]

Answer:

D

Step-by-step explanation:

if you multiply 5 by 2 you get 10

if you multiply 6 by 2 you get 12

5/2 (2) =10/12

Hope this helped

:)

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is two fifths the cube of a number?
    14·2 answers
  • How many days r there in 5 years?
    7·1 answer
  • Calculate the surface area of the following shape
    12·2 answers
  • Evaluate the expression: Arctan(-sqrt3)
    10·1 answer
  • Would you rather buy one 8-lb container of ice cream for $24.56, or two 3-lb 11-oz containers of ice cream for $23.60?
    12·2 answers
  • What is the result of -3+5 on a number line
    13·2 answers
  • Please help brainliest question give right answer!!!
    13·1 answer
  • I need help finding the area
    7·1 answer
  • -2(3x+4y+1) what is the answer
    8·2 answers
  • Help me with this pls
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!