There are the same because 4/8 is rudeced to 1/2
1) Change radical forms to fractional exponents using the rule:The n<span>th root of "</span>a number" = "that number" raised to the<span> reciprocal of n.
For example </span>
![\sqrt[n]{3} = 3^{ \frac{1}{n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7B3%7D%20%3D%20%20%203%5E%7B%20%5Cfrac%7B1%7D%7Bn%7D%20%7D)
.
The square root of 3 (

) = 3 to the one-half power (

).
The 5th root of 3 (
![\sqrt[5]{3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3%7D%20)
) = 3 to the one-fifth power (

).
2) Now use the product of powers exponent rule to simplify:This rule says

. When two expressions with the same base (a, in this example) are multiplied, you
can add their exponents while keeping the same base.
You now have

. These two expressions have the same base, 3. That means you can add their exponents:
3) You can leave it in the form
or change it back into a radical ![\sqrt[10]{3^7}](https://tex.z-dn.net/?f=%20%5Csqrt%5B10%5D%7B3%5E7%7D%20)
------
Answer:
or
Answer:
Answers are square root of 2, square root of 7,
Step-by-step explanation:
Irational is a number that is never ending.
Square root of 2 is irrational since there is no pattern to the number after the decimal.
10/ sqrt of 100. Sqrt of 100 is 10. 10/10 = 1 so this is not a irrational.
Sqrt of 7 does not have a pattern after the decimal point so it is irrational.
5.87 with a dash on top is rational since it means it has a pattern of continues 87's.
Last one it is equal to 2 so it is rattional.
<h2>
Answer:</h2>
y =
x + 3
<h2>
Step-by-step explanation:</h2>
As shown in the graph, the line is a straight line. Therefore, the general equation of a straight line can be employed to derive the equation of the line.
The general equation of a straight line is given by:
y = mx + c <em>or </em>-------------(i)
y - y₁ = m(x - x₁) -----------------(ii)
Where;
y₁ is the value of a point on the y-axis
x₁ is the value of the same point on the x-axis
m is the slope of the line
c is the y-intercept of the line.
Equation (i) is the slope-intercept form of a line
Steps:
(i) Pick any two points (x₁, y₁) and (x₂, y₂) on the line.
In this case, let;
(x₁, y₁) = (0, 3)
(x₂, y₂) = (4, -2)
(ii) With the chosen points, calculate the slope <em>m</em> given by;
m = 
m = 
m = 
(iii) Substitute the first point (x₁, y₁) = (0, 3) and m =
into equation (ii) as follows;
y - 3 =
(x - 0)
(iv) Solve for y from (iii)
y - 3 =
x
y =
x + 3 [This is the slope intercept form of the line]
Where the slope is
and the intercept is 3