Answer – Angle Measure
Generally speaking, when similarity transformations are performed on a triangle, the angle measure is preserved, whereas the length of the sides may be enlarged or reduced depending on the scale factor of the transformation, thus giving rise to similar triangles with corresponding angles that have exactly the same measure and corresponding sides that are proportional.
<span>
</span>
Answer:
C
Step-by-step explanation:
Calculate AC using Pythagoras' identity in ΔABC
AC² = 20² - 12² = 400 - 144 = 256, hence
AC =
= 16
Now find AD² from ΔACD and ΔABD
ΔACD → AD² = 16² - (20 - x)² = 256 - 400 + 40x - x²
ΔABD → AD² = 12² - x² = 144 - x²
Equate both equations for AD², hence
256 - 400 + 40x - x² = 144 - x²
-144 + 40x - x² = 144 - x² ( add x² to both sides )
- 144 + 40x = 144 ( add 144 to both sides )
40x = 288 ( divide both sides by 40 )
x = 7.2 → C
The full $1921.00 because of company incrued cost
y = x^2 -4x
x = -1
y = (-1)^2 - 4×-1=1+4 = 5
x= 0
y = (0)^2 - 4×0 = 0
x = 1
y = 1^2 -4×1 = 1-4 = -3
x = 2
y = 2^2 -4×2 = 4-8 = -4
x=3
y = 3^2 - 4×3 = 9-12 = -3
x = 4
y = 4^2 - 4×4 = 16 - 16 = 0
now 2nd equation
y = 2x^2 + x
x = -2
y = 2 (-2)^2 + (-2)= 8-2 = 6
x = -1
y = 2 (-1)^2+(-1)= 2-1 = 1
x = 0
y = 2(0)^2 +0 = 0
x = 1
y = 2 (1)^2 + 1 = 3
x = 2
y = 2(2)^2+2= 8 + 2 = 10
Answer:
x≥4
Step-by-step explanation
24+4x≥40. Subtract 24 from both sides to get 4x≥16. Divide both sides by 4 to get x≥4.