Answer:
80.0 g Na and 20.0 g N2.
Explanation:
This means the limiting reactant determines the maximum mass of the product formed.
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer:- Mole ratio of D to A is 4:3.
Explanations:- Mole ratio for a chemical reaction is the ratio of the coefficients.
The given generic chemical reaction is:

The numbers written in front of each chemical species in the chemical reaction are their moles. For the given generic chemical reaction the coefficient of A is 3 and that of B is 1. So, the mole ratio of A to B is 3:1.
Similarly if we want to write the mole ratio of C to D then it is 1:4.
We are asked to write the mole ratio of D to A. So, like the other ratios, the mole ratio of D to A is 4:3 as the coefficient of D is 4 and A is 3.
Protons and neutrons are in the center of the atom, making up the nucleus. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
Explanation:
Supersaturation occurs with a chemical solution when the concentration of a solute exceeds the concentration specified by the value equilibrium solubility. Most commonly the term is applied to a solution of a solid in a liquid.