That answer I C. I hope this helps!!!!
If the question is to find the slope-intercept form of both lines, here's the answer:
Both lines pass through the point (-3,-4), so we can use these coordinates in both equations. The slope-intercept form is represented by y=mx+b, with m the slope, b the intersection of the line with Y'Y for x=0, y and x the coordinates of a point.
Let's first apply all these for the first line, with a slope of 4.
y = mx + b
y=-3; x=-4; m=4. All we need to do is find b.
-3 = 4(-4) + b
-3 = -16 + b
b=13
So the equation of the first line is y= 4x + 13.
Now, we'll do the same thing but for the second line:
y=-3; x=-4; m=-1/4, and we need to find b.
-3 = (-1/4)(-4) + b
-3 = 1 + b
b= -4
So the equation of the second line is y=(-1/4)x - 4
Hope this Helps! :)
Answer:
There is a site where you can look these up, Try to look it up on the internet heres some sites, For Homework: slader
math -
way
explanation:
I cannot read the images clearly
God bless you ma’am/ sir.!!!!-8hsiwhwhjwiwis&/&):8292jwiaiia21161
Answer:
-2x-5y+8z+4.5=0
Step-by-step explanation:
Let (x,y,z) be the coordinates of the point lying on the needed plane. This point is equidistant from the points (-3, 5, -4) and (-5, 0, 4), so
