Your equation should be
$4(40 tickets) + $5(X) = $400
160 +5x = 400
-160 -160
0 5x = 340
divide both sides by 5
5x/5 = 340/5
x = 68
so they need to sell 68 tickets at the door.
4(40) + 5(68) = 400
160 + 340 + 400
400 + 400
A percentage
Have a good dayyyyyy
95n+75 is less than or equal to 645. 645-75=570. 95n is less than or equal to 570. 570/95=6. A maximum of six nights
Answer:
x = 5, y = -1/2
Step-by-step explanation:
3.5x - 5y = 20
3x + 4y = 13 multiply by 1.25 so the y's match up (you could match x's too)
3.75x + 5y = 16.25
–––––––––––––––––––––––
3.5x - 5y = 20
3.75x +5y = 16.25
7.25x + 0y = 36.25 you can add or subtract here (on this equation you add)
7.25x=36.25
x=5 So now we have x=5 and to find y we can just plug in x into one of the equations
–––––––––––––––––––
3(5) + 4y = 13
15 + 4y = 13
4y = -2
y = -1/2
x = 5, y = -1/2
Then you can plug in both to check your answers.
Answer:
![\sqrt\frac{387}{20}](https://tex.z-dn.net/?f=%5Csqrt%5Cfrac%7B387%7D%7B20%7D)
Step-by-step explanation:
![Arc Length =\int\limits^a_b {\sqrt{1+(\frac{dy}{dx})^2 } } \, dx](https://tex.z-dn.net/?f=Arc%20Length%20%3D%5Cint%5Climits%5Ea_b%20%7B%5Csqrt%7B1%2B%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E2%20%7D%20%7D%20%5C%2C%20dx)
![y=\dfrac{3}{5}x^{\frac{5}{3}}- \dfrac{3}{4}x^{\frac{1}{3}}+6](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B3%7D%7B5%7Dx%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D-%20%20%5Cdfrac%7B3%7D%7B4%7Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2B6)
![\frac{dy}{dx} =x^{\frac{2}{3}}-\dfrac{1}{4}x^{-\frac{2}{3}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3Dx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-%5Cdfrac%7B1%7D%7B4%7Dx%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D)
![1+(\frac{dy}{dx})^2 }=1+(x^{\frac{2}{3}}-\dfrac{1}{4}x^{-\frac{2}{3}})^2\\=1+(x^{\frac{4}{3}}-\dfrac{1}{2}+ \dfrac{1}{16}x^{-\frac{4}{3}})](https://tex.z-dn.net/?f=1%2B%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E2%20%7D%3D1%2B%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-%5Cdfrac%7B1%7D%7B4%7Dx%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%29%5E2%5C%5C%3D1%2B%28x%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D-%5Cdfrac%7B1%7D%7B2%7D%2B%20%5Cdfrac%7B1%7D%7B16%7Dx%5E%7B-%5Cfrac%7B4%7D%7B3%7D%7D%29)
![=\dfrac{1}{2}+x^{\frac{4}{3}}+ \dfrac{1}{16}x^{-\frac{4}{3}}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B1%7D%7B2%7D%2Bx%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D%2B%20%5Cdfrac%7B1%7D%7B16%7Dx%5E%7B-%5Cfrac%7B4%7D%7B3%7D%7D)
For the Interval ![1\leq x\leq 8](https://tex.z-dn.net/?f=1%5Cleq%20x%5Cleq%208)
Length of the Curve ![=\int\limits^8_1 {\sqrt{\dfrac{1}{2}+x^{\frac{4}{3}}+ \dfrac{1}{16}x^{-\frac{4}{3}} } } \, dx\\](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E8_1%20%7B%5Csqrt%7B%5Cdfrac%7B1%7D%7B2%7D%2Bx%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D%2B%20%5Cdfrac%7B1%7D%7B16%7Dx%5E%7B-%5Cfrac%7B4%7D%7B3%7D%7D%20%7D%20%7D%20%5C%2C%20dx%5C%5C)
Using T1-Calculator
![=\sqrt\frac{387}{20}](https://tex.z-dn.net/?f=%3D%5Csqrt%5Cfrac%7B387%7D%7B20%7D)