Answer:
10 cm
Step-by-step explanation:
Because it is a parrallogram and by its property it will be 10
<span>3x - 2y + 2y > -14 + 2y </span>
<span>3x + 0 > -14 + 2y </span>
<span>3x > -14 + 2y </span>
<span>3x + 14 > -14 + 14 + 2y </span>
<span>3x + 14 > 0 + 2y </span>
<span>3x + 14 > 2y </span>
<span>(3x + 14)/2 > 2y/2 </span>
<span>(3x + 14)/2 > y*(2/2) </span>
<span>(3x + 14)/2 > y*(1) </span>
<span>(3x + 14)/2 > y </span>
<span>y < (3x + 14)/2 </span>
<span>y < 3x/2 + 14/2 </span>
<span>y < 3x/2 + 7 </span>
<span>y < (3/2)*x + 7 </span>
<span>“y” is LESS THAN (3/2)*x + 7 </span>
<span>the slope intercept form of the inequality is: y < (3/2)*x + 7 </span>
<span>STEP 2: Temporarily change the inequality into an equation by replacing the < symbol with an = symbol. </span>
<span>y < (3/2)*x + 7 </span>
<span>y = (3/2)*x + 7 </span>
<span>STEP 3: Prepare the x-y table using the equation from Step 2. </span>
<span>Using the slope intercept form of the equation from Step 2, choose a value for x, and then compute y for at least three points. </span>
<span>Although you could plot the graph with just two sets of x-y coordinates, you should compute at least three different sets of coordinates points to ensure you have not made a mistake. All three x-y coordinates must lie on the same straight line. If they do not, you have made a mistake. </span>
<span>You can choose any value for x. </span>
<span>For example, (arbitrarily) choose x = -2 </span>
<span>If x = -2, </span>
<span>y = (3/2)*x + 7 </span>
<span>y = (3/2)*(-2) + 7 </span>
<span>y = 4 </span>
Answer:
After the sales tax
$235
before sales tax
210.32
Step-by-step explanation:
For one pie , she will use 2.3 cups of flour .
Step 1:
Calculate the measure of angle ∠ABC



From the triangle in the question,

Step 2:
Calculate the value of AB using the cosine rule below

By substituting the values, we will have
![\begin{gathered} b^2=a^2+c^2-2\times a\times c\times\cos B \\ b^2=10^2+15^2-2\times10\times15\times\cos 115^0 \\ b^2=100+225-300\times(-0.4226) \\ b^2=325+126.78 \\ b^2=451.78 \\ \text{Square root both sides} \\ \sqrt[]{b^2}=\sqrt[]{451.78} \\ b=21.26\operatorname{km} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20b%5E2%3Da%5E2%2Bc%5E2-2%5Ctimes%20a%5Ctimes%20c%5Ctimes%5Ccos%20B%20%5C%5C%20b%5E2%3D10%5E2%2B15%5E2-2%5Ctimes10%5Ctimes15%5Ctimes%5Ccos%20115%5E0%20%5C%5C%20b%5E2%3D100%2B225-300%5Ctimes%28-0.4226%29%20%5C%5C%20b%5E2%3D325%2B126.78%20%5C%5C%20b%5E2%3D451.78%20%5C%5C%20%5Ctext%7BSquare%20root%20both%20sides%7D%20%5C%5C%20%5Csqrt%5B%5D%7Bb%5E2%7D%3D%5Csqrt%5B%5D%7B451.78%7D%20%5C%5C%20b%3D21.26%5Coperatorname%7Bkm%7D%20%5Cend%7Bgathered%7D)
Hence,
The distance of point A to point C is = 21.26km