<span>KCl<span>O3</span><span>(s)</span>+Δ→KCl<span>(s)</span>+<span>32</span><span>O2</span><span>(g)</span></span>
Approx. <span>3L</span> of dioxygen gas will be evolved.
Explanation:
We assume that the reaction as written proceeds quantitatively.
Moles of <span>KCl<span>O3</span><span>(s)</span></span> = <span><span>10.0⋅g</span><span>122.55⋅g⋅mo<span>l<span>−1</span></span></span></span> = <span>0.0816⋅mol</span>
And thus <span><span>32</span>×0.0816⋅mol</span> dioxygen are produced, i.e. <span>0.122⋅mol</span>.
At STP, an Ideal Gas occupies a volume of <span>22.4⋅L⋅mo<span>l<span>−1</span></span></span>.
And thus, volume of gas produced = <span>22.4⋅L⋅mo<span>l<span>−1</span></span>×0.0816⋅mol≅3L</span>
Note that this reaction would not work well without catalysis, typically <span>Mn<span>O2</span></span>.
They move fast enough to overcome the forces of attraction that hold them together, becoming a gas.
ITS THAT :)
Answer: Massive
Explanation: There are many galaxies out in the universe and it's possible they go on indefinitely. Out of all of these, our solar system is very very tiny. As an analogy, our universe would be like an atom which are the the smallest units of matter. There are many other galaxies that we just haven't been able to discover but they are there.
Explanation:
From the knowledge of law of multiple proportions,
mass ratio of S to O in SO:
mass of S : mass of O
= 32 : 16
= 32/16
= 2/1
mass ratio of S to O in SO2:
= mass of S : 2 × mass of O
= 32 : 2 × 16
= 32/32
= 1/1
ratio of mass ratio of S to O in SO to mass ratio of S to O in SO2:
= 2/1 ÷ 1/1
= 2
Thus, the S to O mass ratio in SO is twice the S to O mass ratio in SO2.