The given reaction Mg + O₂ → MgO is a type of Synthesis reaction. Hence option (1) is correct.
<h3>What is Synthesis reaction ?</h3>
Synthesis reactions are reactions that occur when two different atoms or molecules interact to form one molecule or compound.
It is also known as combination reaction
In the given reaction Mg and O combines with each other to form one product i.e, MgO. Hence, The given reaction Mg + O₂ → MgO is a type of Synthesis reaction. Thus, option (1) is correct.
Learn more about chemical reaction here ;
brainly.com/question/27948961
#SPJ1
5.732 grams of AgCl is formed when 0.200 L of 0.200 M AGNO3 reacts with an excess of CaCl2.
Explanation:
The balanced equation:
2 AgNO3(aq) + CaCl2(aq) -----> 2 AgCl(s) + Ca(NO3)2(aq)
data given:
volume of AgNO3 = 0.2 L
molarity of AgNO3 = 0.200 M
atomic weight of AgCl= 143.32 gram/mole
from the formula, number of moles can be calculated
Molarity = 
number of moles of AgNO3 = 0.04
From the reaction:
2 moles of AgNO3 reacts to form 2 moles of AgCl
0.04 moles of AgNO3 reacts to form x mole of AgCl
= 
= 0.04 moles of AgCl is formed
mass of AgCl formed is calculated by multiplying number of moles with atomic mass of AgCl
mass of AgCl = 0.04 x 143.32
= 5.732 grams of AgCl is formed.
Variable B will become lower due to variable A becoming smaller think of it like a seesaw if you put something on one side there will be a reaction on the other =)
This problem is providing the heating curve of ethanol showing relevant data such as the initial and final temperature, melting and boiling points, enthalpies of fusion and vaporization and specific heat of solid, liquid and gaseous ethanol, so that the overall heat is required and found to be 1.758 kJ according to:
<h3>Heating curves:</h3>
In chemistry, we widely use heating curves in order to figure out the required heat to take a substance from a temperature to another. This process may involve sensible heat and latent heat, when increasing or decreasing the temperature and changing the phase, respectively.
Thus, since ethanol starts off solid and end up being a vapor, we will find five types of heat, three of them related to the heating-up of ethanol, firstly solid, next liquid and then vapor, and the other two to its fusion and vaporization as shown below:

Hence, we begin by calculating each heat as follows, considering 1 g of ethanol is equivalent to 0.0217 mol:
![Q_1=0.0217mol*111.5\frac{J}{mol*\°C}[(-114.1\°C)-(-200\°C)] *\frac{1kJ}{1000J} =0.208kJ\\ \\ Q_2=0.0217mol*4.9\frac{kJ}{mol} =0.106kJ\\ \\ Q_3=0.0217mol*112.4\frac{J}{mol*\°C}[(78.4\°C)-(-114.1\°C)] *\frac{1kJ}{1000J} =0.470kJ\\ \\ Q_4=0.0217mol*38.6\frac{kJ}{mol} =0.838kJ\\ \\ Q_5=0.0217mol*87.5\frac{J}{mol*\°C}[(150\°C)-(78.4\°C)] *\frac{1kJ}{1000J} =0.136kJ](https://tex.z-dn.net/?f=Q_1%3D0.0217mol%2A111.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28-114.1%5C%C2%B0C%29-%28-200%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.208kJ%5C%5C%0A%5C%5C%0AQ_2%3D0.0217mol%2A4.9%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.106kJ%5C%5C%0A%5C%5C%0AQ_3%3D0.0217mol%2A112.4%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%2878.4%5C%C2%B0C%29-%28-114.1%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.470kJ%5C%5C%0A%5C%5C%0AQ_4%3D0.0217mol%2A38.6%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.838kJ%5C%5C%0A%5C%5C%0AQ_5%3D0.0217mol%2A87.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28150%5C%C2%B0C%29-%2878.4%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.136kJ)
Finally, we add them up to get the result:

Learn more about heating curves: brainly.com/question/10481356
For the answer to the question above, I believe it is an<span>A ionic bond because NaCl is a bond between a metal and a non-metal. Na has a +1 charge and Cl has a -1 charge, therefore there is an exchange of ions between both elements to achieve a stable configuration.</span>