Energy levels are the electron shells where electrons are found at a fixed distance from the nucleus of the atom. The atom could emit 6 different wavelengths.
<h3>What is wavelength?</h3>
A wavelength is a distance between the adjacent crests in wave signals propagated in a system. Wavelength
is in inverse relation to the frequency of the wave.
When an electron jumps from energy level 1 to 2, 1 to 3, and 1 to 4 one wavelength each is present. Hence, making the total wavelength to be 3, in transition from the first energy level.
Similarly, from energy levels, 2 to 3 and 2 to 4, a total of 2 wavelengths, and from energy levels 3 to 4 one wavelength is produced.
So the total different wavelengths of the radiation that can be emitted will be 3 + 2 + 1 = 6.
Therefore, 6 different wavelengths of radiation will be emitted by the atom.
Learn more about wavelengths here:
brainly.com/question/21419520
#SPJ1
Answer:
Zinc
Explanation:
The specific heat capacity can be described as the amount of heat required to raise the temperature of a substance by one degrees Celsius. It is represented by C or S. The greater the carrying capacity of a substance, the more will be the heat required for that substance.
As we can see in the information given in the question, the specific heat capacity of zinc is the lowest as compared to steel, water and aluminium. Hence, zinc is the correct option.
Answer:
B and C
Explanation:
The correct answer is Condensation and Deposition
<h3>
Answer:</h3>
2000 atoms
<h3>
Explanation:</h3>
We are given the following;
Initial number of atoms of radium-226 as 8000 atoms
Time taken for the decay 3200 years
We are required to determine the number of atoms that will remain after 3200 years.
We need to know the half life of Radium
- Half life is the time taken by a radio active material to decay by half of its initial amount.
- Half life of Radium-226 is 1600 years
- Therefore, using the formula;
Remaining amount = Original amount × 0.5^n
where n is the number of half lives
n = 3200 years ÷ 1600 years
= 2
Therefore;
Remaining amount = 8000 atoms × 0.5^2
= 8000 × 0.25
= 2000 atoms
Thus, the number of radium-226 that will remain after 3200 years is 2000 atoms.
<h2>Answer </h2>
Option C - 320J
<u>Explanation </u>
Since ethanol solid at −120 °C and is only cooling down (it won’t change states)
. The amount of Thermodynamic properties values c is given in form of solid, liquid and gas. Amount of energy released is calculated below.
Formula,
= change in temperature x specific heat capacity for solid ethanol x 40
=> 0.5 x 16x 40 = 320J
Therefore, the 320J of heat is released when 40.0g of ethanol cools.