Answer:
The answerrrrrrrrrrr is (0,-2)
complete question:
The sum of the digits of a two-digit numeral is 8. If the digits are reversed, the new number is 18 greater than the original number. How do you find the original numeral?
Answer:
The original number is 10a + b = 10 × 3 + 5 = 35
Step-by-step explanation:
Let
the number = ab
a occupies the tens place while b occupies the unit place. Therefore,
10a + b
The sum of the digits of two-digits numeral
a + b = 8..........(i)
If the digits are reversed. The reverse digit will be 10b + a. The new number is 18 greater than the original number.
Therefore,
10b + a = 18 + 10a + b
10b - b + a - 10a = 18
9b - 9a = 18
divide both sides by 9
b - a = 2...............(ii)
a + b = 8..........(i)
b - a = 2...............(ii)
b = 2 + a from equation (ii)
Insert the value of b in equation (i)
a + (2 + a) = 8
2a + 2 = 8
2a = 6
a = 6/2
a = 3
Insert the value of a in equation(ii)
b - 3 = 2
b = 2 + 3
b = 5
The original number is 10a + b = 10 × 3 + 5 = 35
Answer:
x=0
Step-by-step explanation:
To solve, we need to get all the variables on one side of the equation, and all the numbers on the other
6(x + 1) – 5x = 8 + 2(x - 1)
First, distribute the 6 on the left
6*x+6*1 -5x=8 +2(x-1)
6x+6-5x=8+2(x=1)
Combine like terms on the left
(6x-5x)+6=8+2(x-1)
x+6=8+2(x-1)
Distribute the 2 on the right
x+6=8+2*x+2*-1
x+6=8+2x-2
Combine like terms on the right
x+6=2x+(8-2)
x+6=2x+6
Subtract x from both sides
6=x+6
Subtract 6 from both sides
x=0
Hope this helps! :)
Set h to 640 and solve for t:
640 = -490t^2 + 1120t
Subtract 640 from both sides:
-490t^2 + 1120t - 640 = 0
The formula to solve a quadratic equation is:
x = -b -/+ sqrtroot (b^2-4ac)/(2a) where a = -490, b = 1120 and c = -640
Solve:
x = -1120 -/+ sqrtroot (1120^2-4(-490)(-640) )/ 2(-490)
x = 8/7 = 1.1428 = 1.14
Time was 1.14 seconds
Answer: (sqrt(6),0)
Step-by-step explanation:
By substituting all of the choices into the equation, we get that the 2nd answer from top is the only answer