Let's start b writing down coordinates of all points:
A(0,0,0)
B(0,5,0)
C(3,5,0)
D(3,0,0)
E(3,0,4)
F(0,0,4)
G(0,5,4)
H(3,5,4)
a.) When we reflect over xz plane x and z coordinates stay same, y coordinate changes to same numerical value but opposite sign. Moving front-back is moving over x-axis, moving left-right is moving over y-axis, moving up-down is moving over z-axis.
A(0,0,0)
Reflecting
A(0,0,0)
B(0,5,0)
Reflecting
B(0,-5,0)
C(3,5,0)
Reflecting
C(3,-5,0)
D(3,0,0)
Reflecting
D(3,0,0)
b.)
A(0,0,0)
Moving
A(-2,-3,1)
B(0,-5,0)
Moving
B(-2,-8,1)
C(3,-5,0)
Moving
C(1,-8,1)
D(3,0,0)
Moving
D(1,-3,1)
Answer: did you ever get the answer?
Step-by-step explanation:
I need it too lol
The simplified form of the given expression is
.
The given expression is
.
We need to simplify the given expression.
<h3>What are the basic laws of exponents?</h3>
The basic laws of exponents are as follows:




Now, 

Therefore, the simplified form of the given expression is
.
To learn more about the exponents visit:
brainly.com/question/26296886.
#SPJ1