Pressure
= Force/Area
Area = π(d^2)/4
= π(0.4^2)/4
=0.126 m2
Pressure
= 50/0.126
= 396.825 Pa
Given :
Mass of water, m = 2 grams.
The temperature of water drops from 31 °C to 29 °C .
The specific heat of water is 4.184 J/(g • °C).
To Find :
Amount of heat lost in this process.
Solution :
We know, heat lost is given by :

Therefore, amount of heat lost in this process is 16.736 J.
Hello! :)
The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.
Hope I helped and didn’t answer too late!
Good luck and stay COOL!
~ Destiny ^_^
Answer:
Explanation:
The tip of the second hand moves on a circular path having radius equal to .22 m . Redial acceleration is given by the expression
ω²R where ω is angular velocity and R is radius of the circular path .
angular velocity of second hand = 2π / T where T is time period of circular motion . For second hand it is 60 s.
ω = 2π / T
= 2π / 60
= .1047
angular acceleration = .1047² x .22
= 2.41 x 10⁻³ rad / s² .
Answer:
Explanation:
Given an RL circuit
A voltage source of.
V = 108V
A resistor of resistance
R = 1.1-kΩ = 1100 Ω
And inductor of inductance
L = 34 H
After he inductance has been fully charged, the switch is open and it connected to the resistor in their own circuit, so as to discharge the inductor
A. Time the inductor current will reduce to 12% of it's initial current
Let the initial charge current be Io
Then, final current is
I = 12% of Io
I = 0.12Io
I / Io = 0.12
The current in an inductor RL circuit is given as
I = Io ( 1—exp(-t/τ)
Where τ is time constant and it is given as
τ = L/R = 34/1100 = 0.03091A
So,
I = Io ( 1—exp(-t/τ))
I / Io = ( 1—exp(-t/τ))
Where I/Io = 0.12
0.12 = 1—exp(-t/τ)
0.12 — 1 = —exp(-t/τ)
-0.88 = -exp(-t/0.03091)
0.88 = exp(-t/0.03091)
Take In of both sides
In(0.88) = In(exp(-t/0.03091)
-0.12783 = -t/0.030901
t = -0.12783 × 0.030901
t = 3.95 × 10^-3 seconds
t = 3.95 ms
B. Energy stored in inductor is given as
U = ½Li²
So, the current at this time t = 3.95ms
I = Io ( 1—exp(-t/τ))
Where Io = V/R
Io = 108/1100 = 0.0982 A
Now,
I = Io ( 1—exp(-t/τ))
I = 0.0982(1 — exp(-3.95 × 10^-3 / 0.030901))
I = 0.0982(1—exp(-0.12783)
I = 0.0982 × 0.12
I = 0.01178
I = 11.78mA
Therefore,
U = ½Li²
U = ½ × 34 × 0.01178²
U = 2.36 × 10^-3 J
U = 2.36 mJ