Answer:
Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Explanation:
As we know that zinc reacts with copper sulfate
so the reaction is given as

so here we have




Now total mass of reactant is given as

Mass of the product is given as

Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
M° = 2.5 kg/sec
For saturated steam tables
at p₁ = 125Kpa
hg = h₁ = 2685.2 KJ/kg
SQ = s₁ = 7.2847 KJ/kg-k
for isotopic compression
S₁ = S₂ = 7.2847 KJ/kg-k
at 700Kpa steam with S = 7.2847
h₂ 3051.3 KJ/kg
Compressor efficiency
h = 0.78
0.78 = h₂ - h₁/h₂-h₁
0.78 = h₂-h₁ → 0.78 = 3051.3 - 2685.2/h₂ - 2685.2
h₂ = 3154.6KJ/kg
at 700Kpa with 3154.6 KJ/kg
enthalpy gives
entropy S₂ = 7.4586 KJ/kg-k
Work = m(h₂ - h₁) = 2.5(3154.6 - 2685.2
W = 1173.5KW
Sorry, I don't know but I think the correct answer is the first option.