Answer:

Explanation:
This is a uniformly accelerated motion, so we can determine the deceleration of the car by using a suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the car in this problem,
u = 27.8 m/s
v = 0
s = 17 m
Solving for a, we find the acceleration:

Because the temperature of the place its contained in is constantly changing, for example, if you put a room temperature item in the fridge it will become cold, or whatever the temperature you set your fridge to.
<em>Answer:</em>
<em>When </em><em>a </em><em>body </em><em>is </em><em>moving </em><em>on </em><em>a </em><em>circle </em><em>it </em><em>is </em><em>accelerating </em><em>because </em><em>centripetal </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>it </em><em>towards </em><em>the </em><em>center.</em>
<em>Please </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em>.</em><em>.</em><em>.</em>
<em>From </em><em>the </em><em>above </em><em>diagram,</em><em>we </em><em>can </em><em>say </em><em>the </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>the </em><em>body </em><em>when </em><em>it </em><em>moves </em><em>in </em><em>a </em><em>circle.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
= 3,126 m / s
Explanation:
In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.
the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s
Before the crash
p₀ = m v₁₀ + M v₂₀
After the inelastic shock
= m
+ M
p₀ = 
m v₀ + M v₂₀ = m
+ M
We cleared the end of the train
M
= m (v₁₀ - v1f) + M v₂₀
Let's calculate
3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45
= (-3.9 + 8.82) /3.60
= 1.36 m / s
As we can see, this speed is lower than the speed of the car, so the two bodies are joined
set speed must be
m v₁₀ + M v₂₀ = (m + M)
= (m v₁₀ + M v₂₀) / (m + M)
= (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)
= 3,126 m / s