Answer:
b
Explanation:
bbbbbbbbbbbbbbvgh c tyvftj xf
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
<span>Fossils provide solid evidence that organisms from the past are not the same as those found today; they show a progression of evolution. Scientists calculate the age of fossils and categorize them to determine when the organisms lived relative to each other. Hope this helps</span>
Answer:
The needed energy to melt of ice is 1670 J.
Explanation:
Given that,
Mass of ice = 5 g
Specific latent heat = 334000 J/kg
We need to calculate the energy
Using formula of energy

Where, m = mass
L = latent heat
Put the value into the formula


Hence, The needed energy to melt of ice is 1670 J.