A sedimentary rock can become an igneous rock by melting and solidification.
Some proteins do indeed need assistance during the folding process. the general term used for the proteins that help other proteins fold is Chaperones.
<h3>What are Chaperones?</h3>
- Chaperones are proteins that help big proteins or macromolecular protein complexes fold or unfold conformationally. There are different groups of molecular chaperones, all of which have the same purpose: to help big proteins fold properly during or after synthesis as well as following partial denaturation.
- Protein translocation for proteolysis involves chaperones as well. The bulk of molecular chaperones aid in protein folding by binding to and stabilizing folding intermediates up until the polypeptide chain is entirely translated, rather than providing any steric information for protein folding.
- Based on their target proteins and location, chaperones have different unique modes of operation.
Learn more about the Protein folding with the help of the given link:
brainly.com/question/28421475
#SPJ4
Yes. Every chemical reaction obeys the law of conservation of mass.
Believe it!!
Pls follow me.
Answer:
The correct answer is A. The cartilaginous structure between the "throat" and the trachea is the larynx.
Explanation:
The larynx is a tubular organ. The larynx wall is composed of 9 pieces of cartilage. Three are odd (thyroid cartilage, epiglottis and cricoid cartilage), and three pairs (arytenoid, cuneiform and corniculate cartilage). In addition, it communicates the pharynx with the trachea and is in front of it.
Answer:
In eukaryotes, it is well known that polyadenylation is required to produce the mature messenger RNA (mRNA) molecule and it provides stability to the mRNA during translation initiation. In prokaryotic organisms, polyadenylation is required for the degradation of the mRNA in a mechanism that involves three steps: endonucleolytic cleavage, polyadenylation and exonucleolytic degradation. Moreover, it is also important to note that no evidence of polyadenylation has bee reported in some prokaryotes including the halophilic bacteria Haloferax volcanic (Slomovic et al. 2005).
Citation:
Slomovic, S., Laufer, D., Geiger, D., & Schuster, G. (2005). Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Molecular and cellular biology, 25(15), 6427-6435.