Q1
I like to use the standard form to write the equation of a perpendicular line, especially when the original equation is in that form. The perpendicular line will have the x- and y-coefficients swapped and one negated (remember this for Question 3). Thus, it will be
... 5x - 2y = 5(6) - 2(16) = -2
Solving for y (to get slope-intercept form), we find
... y = (5/2)x + 1 . . . . . matches selection C
Q2
The given equation has slope -3/6 = -1/2, so that will be the slope of the parallel line. (matches selection A)
Q3
See Q1 for an explanation. The appropriate choice is ...
... B. 4x - 3y = 5
Q4
The given line has slope -2, so you can eliminate all choices except ...
... D. -2x
Q5
The two lines have the same slope (3), but different intercepts, so they are ...
... A. parallel
First, we determine the volumes of the posts may it be cylindrical in shape or rectangular prism.
(A) cylindrical:
( π(26.7/100)² - π(24.2/100)²)*(7.5) = 0.3 m³
(B) rectangular prism:
(40/100)²(7.5) - (35/100)²(7.5) = 0.28125 m³
Then, we calculate for the amount of substance
(A) cylindrical: (0.3 m³)(2700 kg/m³) = 810 kg
(B) rectangular prism : (0.28125 m³)(2700 kg/m³) = 759.375 kg
Then, calculate for the costs
(A) (810 kg)($0.38/kg) = $307.8
(B) (759.375 kg)($0.38/kg) = $288.56
Thus, the answer for A is rectangular post
B. About $19.24 can be saved.
The sum of the first 75 terms of the arithmetic sequence that has 10th term as 16 and the 35th term as 66 is 5400.
<h3>How to find the sum of terms using Arithmetic sequence formula</h3>
aₙ = a + (n - 1)d
where
Therefore, let's find a and d
a₁₀ = a + (10 - 1)d
a₃₅ = a + (35 - 1)d
Hence,
16 = a + 9d
66 = a + 34d
25d = 50
d = 50 / 25
d = 2
16 - 9(2) = a
a = 16 - 18
a = -2
Therefore, let's find the sum of 75 terms of the arithmetic sequence
Sₙ = n / 2 (2a + (n - 1)d)
S₇₅ = 75 / 2 (2(-2) + (75 - 1)2)
S₇₅ = 37.5 (-4 + 148)
S₇₅ = 37.5(144)
S₇₅ = 5400
learn more on arithmetic sequence here: brainly.com/question/1687271
I’m pretty sure it’s c , sorry if it’s wrong tho
Answer:
D) 0 = 2(x + 5)(x + 3)
Step-by-step explanation:
Which of the following quadratic equations has no solution?
We have to solve the Quadratic equation for all the options in other to get a positive value as a solution for x.
A) 0 = −2(x − 5)2 + 3
0 = -2(x - 5) × 5
0 = (-2x + 10) × 5
0 = -10x + 50
10x = 50
x = 50/10
x = 5
Option A has a solution of 5
B) 0 = −2(x − 5)(x + 3)
Take each of the factors and equate them to zero
-2 = 0
= 0
x - 5 = 0
x = 5
x + 3 = 0
x = -3
Option B has a solution by one of its factors as a positive value of 5
C) 0 = 2(x − 5)2 + 3
0 = 2(x - 5) × 5
0 = (2x -10) × 5
0 = 10x -50
-10x = -50
x = -50/-10
x = 5
Option C has a solution of 5
D) 0 = 2(x + 5)(x + 3)
Take each of the factors and equate to zero
0 = 2
= 0
x + 5 = 0
x = -5
x + 3 = 0
x = -3
For option D, all the values of x are 0, or negative values of -5 and -3.
Therefore the Quadratic Equation for option D has no solution.