Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
(9/10)x3 feet
= (9/10)x36 inches
= 32.4 inches
Answer:
Step-by-step explanation:
y > (1/3)x + 4 has an infinite number of solutions. Draw a dashed line representing y = (1/3)x + 4 and then pick points at random on either side of this line. For example, pick (1, 6). Substitute 1 for x in y > (1/3)x + 4 and 6 for y. Is the resulting inequality true? Is 6 > (1/3)(1) + 4 true? YES. So we know that (1, 6) is a solution of y > (1/3)x + 4. Because (1, 6) lies ABOVE the line y = (1/3)x + 4, we can conclude that all points abovve this line are solutions.
Distributing same key numbers
Answer:
No
Step-by-step explanation: