Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
So you can use the equation force = mass x acceleration to do 2 x 5 to get 10 N
Answer:
143 °
Explanation:
a ) If d be the distance between slits , λ be wavelength of light used and at angle θ nth dark fringe is formed then
d sinθ = ( 2n+1) λ/2
for first dark fringe
d sinθ = λ/2
d /λ = 1/ 2 sinθ
1 / 2 sin15
= 1.93
b )
For intensity of fringe at angle θ, the relation is
I = I₀ cos²θ
I / I₀ = cos²θ/2
Given I / I₀ =0. 1
0.1 = cos²θ/2
θ/2 = 71.5
θ = 143 °
1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

<span>Organelles which are very important
in giving nutrients. During cellular respiration, the food molecules such as
glucose, are oxidized to carbon dioxide (CO2) and water (H2O) and trapped in
ATP (Adenosine triphosphate) form for further us of cell’s activities. ATP’s
are formed at mitochondria – the cell’s powerhouse. This type of organelle
takes and breaks nutrients absorbed by the cell and creates energy afterward.
The energy from ATP is then used by the body in kinetic activities like running
& walking or involuntary activities like breathing, blood circulation,
stimulus-responding, etc.</span>