The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant

let's do it for this case:

the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator

so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

Answer:
The maximum change in flux is 
The average induced emf 
Explanation:
From the question we are told that
The speed of the technician is 
The distance from the scanner is 
The initial magnetic field is 
The final magnetic field is 
The diameter of the loop is 
The area of the loop is mathematically represented as
![A = \pi [\frac{D}{2} ]^2](https://tex.z-dn.net/?f=A%20%20%3D%20%20%5Cpi%20%5B%5Cfrac%7BD%7D%7B2%7D%20%5D%5E2)


At maximum the change in magnetic field is mathematically represented as

=> 

The average induced emf is mathematically represented as



Answer:
The nature of volcanic eruptions is highly dependent on magma viscosity and also on dissolved gas content. ... long it takes the treacle to flow from one end of a boiling tube to the other.