Generally, frictional losses are more predominant for the machines being not 100% efficient. This friction leads to the loss of energy in the form of heat, into the surroundings. Some of the supplied energy may be utilised to change the entropy (measure of randomness of the particles) of the system.
Answer:
a) Please see attached copy below
b) 0.39KJ
c) 20.9‰
Explanation:
The three process of an air-standard cycle are described.
Assumptions
1. The air-standard assumptions are applicable.
2. Kinetic and potential energy negligible.
3. Air in an ideal gas with a constant specific heats.
Properties:
The properties of air are gotten from the steam table.
b) T₁=290K ⇒ u₁=206.91 kj/kg, h₁=290.16 kj/kg.
P₂V₂/T₂=P₁V₁/T₁⇒ T₂=P₂T₁/P₁ = 380/95(290K)= 1160K
T₃=T₂(P₃/P₂)⁽k₋1⁾/k =(1160K)(95/380)⁽⁰°⁴/₁.₄⁾ =780.6K
Qin=m(u₂₋u₁)=mCv(T₂-T₁)
=0.003kg×(0.718kj/kg.k)(1160-290)K= 1.87KJ
Qout=m(h₃₋h₁)=mCp(T₃₋T₁)
=0.003KG×(1.005kj/kg.k(780.6-290)K= 1.48KJ
Wnet, out= Qin-Qout = (1.87-1.48)KJ =0.39KJ
c)ηth= Wnet/W₍in₎ =0.39KJ/1.87KJ = 20.9‰
Answer:
it is not possible to place the wires in the condui
Explanation:
given data
total area = 2.04 square inches
wires total area = 0.93 square inches
maximum fill conduit = 40%
to find out
Can it is possible place wire in conduit conduit
solution
we know maximum fill is 40%
so here first we get total area of conduit that will be
total area of conduit = 40% × 2.04
total area of conduit = 0.816 square inches
but this area is less than required area of wire that is 0.93 square inches
so we can say it is not possible to place the wires in the conduit
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Answer:
try settings and go to updates?
Explanation: