Express it in standard form and apply the basic indices laws to simplify
Answer:
diesel engine
Explanation:
because diesel is stronger than petrol
Answer:
B) 5.05
Explanation:
The wall thickness of a pipe is the difference between the diameter of outer wall and the diameter of inner wall divided by 2. It is given by:
Thickness of pipe = (Outer wall diameter - Inner wall diameter) / 2
Given that:
Inner diameter = ID = 25 ± 0.05, Outer diameter = OD = 35 ± 0.05
Maximum outer diameter = 35 + 0.05 = 35.05
Minimum inner diameter = 25 - 0.05 = 24.95
Thickness of pipe = (maximum outer wall diameter - minimum inner wall diameter) / 2 = (35.05 - 24.95) / 2 = 5.05
or
Thickness = (35 - 25) / 2 + 0.05 = 10/2 + 0.05 = 5 + 0.05 = 5.05
Therefore the LMC wall thickness is 5.05
Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, ![\epsilon_i = \frac{\sigma}{E}](https://tex.z-dn.net/?f=%5Cepsilon_i%20%3D%20%5Cfrac%7B%5Csigma%7D%7BE%7D)
![\epsilon_i = \frac{100\times 10^{6} Pa}{50\times 10^{9} Pa}](https://tex.z-dn.net/?f=%5Cepsilon_i%20%3D%20%5Cfrac%7B100%5Ctimes%2010%5E%7B6%7D%20Pa%7D%7B50%5Ctimes%2010%5E%7B9%7D%20Pa%7D)
![\epsilon_i = 0.002](https://tex.z-dn.net/?f=%5Cepsilon_i%20%3D%200.002)
creep rate in the steady state
![\frac{\delta \epsilon}{\delta t} = (1 \times {10}^{-5})\sigma^4 exp^(\frac{-2eV}{kT} )](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdelta%20%5Cepsilon%7D%7B%5Cdelta%20t%7D%20%3D%20%281%20%5Ctimes%20%7B10%7D%5E%7B-5%7D%29%5Csigma%5E4%20exp%5E%28%5Cfrac%7B-2eV%7D%7BkT%7D%20%29)
![\frac{\epsilon_{initial} - \epsilon _{primary}}{t_{initial}-t_{final}} = 1 \times 10^{-5}(100)^{4}exp(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )(800+273)K} )](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cepsilon_%7Binitial%7D%20-%20%5Cepsilon%20_%7Bprimary%7D%7D%7Bt_%7Binitial%7D-t_%7Bfinal%7D%7D%20%3D%201%20%5Ctimes%2010%5E%7B-5%7D%28100%29%5E%7B4%7Dexp%28%5Cfrac%7B-2eV%7D%7B8.62%5Ctimes10%5E%7B-5%7D%28%5Cfrac%7BeV%7D%7BK%7D%20%29%28800%2B273%29K%7D%20%29)
but Tinitial = 0
![\epsilon_{initial} - \epsilon _{primary}} = 0.002 - 0.003 = -0.001](https://tex.z-dn.net/?f=%5Cepsilon_%7Binitial%7D%20-%20%5Cepsilon%20_%7Bprimary%7D%7D%20%3D%200.002%20-%200.003%20%3D%20-0.001)
![\frac{-0.001}{-t_{final}} = 1 \times 10^{-5}(100)^{4}\times 10^{(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )1073K} )}](https://tex.z-dn.net/?f=%5Cfrac%7B-0.001%7D%7B-t_%7Bfinal%7D%7D%20%3D%201%20%5Ctimes%2010%5E%7B-5%7D%28100%29%5E%7B4%7D%5Ctimes%2010%5E%7B%28%5Cfrac%7B-2eV%7D%7B8.62%5Ctimes10%5E%7B-5%7D%28%5Cfrac%7BeV%7D%7BK%7D%20%291073K%7D%20%29%7D)
solving the above equation,
we get
Tfinal = 2459.82 hr
Answer:
blah blah blah sh ut up read learn