Answer:
a) P = 86720 N
b) L = 131.2983 mm
Explanation:
σ = 271 MPa = 271*10⁶ Pa
E = 119 GPa = 119*10⁹ Pa
A = 320 mm² = (320 mm²)(1 m² / 10⁶ mm²) = 3.2*10⁻⁴ m²
a) P = ?
We can apply the equation
σ = P / A ⇒ P = σ*A = (271*10⁶ Pa)(3.2*10⁻⁴ m²) = 86720 N
b) L₀ = 131 mm = 0.131 m
We can get ΔL applying the following formula (Hooke's Law):
ΔL = (P*L₀) / (A*E) ⇒ ΔL = (86720 N*0.131 m) / (3.2*10⁻⁴ m²*119*10⁹ Pa)
⇒ ΔL = 2.9832*10⁻⁴ m = 0.2983 mm
Finally we obtain
L = L₀ + ΔL = 131 mm + 0.2983 mm = 131.2983 mm
Answer:
(a) 20 MHz
(b) 1.025 KW
(c) 3.33 ns
(d) 33 pF
Explanation:
(a) 20,000,000 Hz = 20 x 10^6 Hz = 20 Mega Hz = <u>20 MHz</u>
(b) 1025 W = 1.025 x 10^3 W = 1.025 Kilo W = <u>1.025 KW</u>
(c) 0.333 x 10^(-8) s = 3.33 x 10^(-9) s = 3.33 nano s = <u>3.33 ns</u>
(d) 33 x10^(-12)F = 33 pico F = <u>33 pF</u>
Answer:
geolocation technologies, drones, automated transportation vehicles
Explanation:
The altitude ensures acceptable navigational signal coverage only within 22 NM of a VOR.
<h3>What is altitude?</h3>
Altitude or height exists as distance measurement, usually in the vertical or "up" approach, between a reference datum and a point or object. The exact meaning and reference datum change according to the context.
The MOCA exists in the lower published altitude in effect between fixes on VOR airways, off-airway routes, or route segments that satisfy obstacle support conditions for the whole route segment. This altitude also ensures acceptable navigational signal coverage only within 22 NM of a VOR.
The altitude ensures acceptable navigational signal coverage only within 22 NM of a VOR.
Therefore, the correct answer is 22 NM of a VOR.
To learn more about altitudes refer to:
brainly.com/question/1159693
#SPJ4
Answer: P = I2R = 0.032 x 1000 =0.9 W
Explanation: The power will be the product of the square of the current and
the resistance of the load. The fact that the circuit is a parallel circuit is irrelevant to this question.