Answer:
84.8%
Explanation:
Step 1: Given data
Bob measured out 1.60 g of Na. He forms NaCl according to the following equation.
Na + 1/2 Cl₂ ⇒ NaCl
According to this equation, he calculates that 1.60 g of sodium should produce 4.07 g of NaCl, which is the theoretical yield. However, he carries out the experiment and only makes 3.45 g of NaCl, which is the real yield.
Step 2: Calculate the percent yield.
We will use the following expression.
%yield = real yield / theoretical yield × 100%
%yield = 3.45 g / 4.07 g × 100% = 84.8%
Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).
The boiling point of hydrocarbons generally increases as the size of the molecules increases because more bonds are needs to be broken in larger organic molecules.
<h3>What are hydrocarbons?</h3>
Hydrocarbons are organic compounds which here composed of hydrogen and carbon alone.
Hydrocarbons are grouped into families or homologous series based on a reactive group known as the gincyiial group
The homologous series include
The boiling point generally increases as the size of the molecules increases because more bonds are needs to be broken in larger organic molecules.
Learn more about hydrocarbons at: brainly.com/question/3551546
#SPJ1
<span>The rate of infusion is 2.1L/19h or 2100mL/19h (as 1L = 100 mL).
To convert 19 hours to minutes we multiply as follows:
19 hours = (19 hours) x (60 minutes/1 hour) = 1140 minutes
So the rate of infusion becomes:
2100mL /1140 min
In order to converted mL to drops (gtt) we multiply the rate of infusion with the drop factor to get the drip rate:
(2100mL/1140min) x (20 gtt/mL) = 36.8 gtt/min</span>
The mass stays constant as a substance changes from a liquid to a gas.
The Law of Conservation of Mass states that, in ordinary chemical reactions, mass is neither destroyed nor created.
That is, the mass of the reactants must equal the mass of the products.
2H₂O(ℓ) ⟶ 2H₂O(g)
1 g 1 g
If the mass of liquid water is 1 g, the mass of the water vapour must be 1 g.
Even though the water vapour is a gas and you can’t see it, it still has a mass
of 1 g.