Q=mc(deltaT)
Q is the amount of energy which you are looking for
M is the mass which you can find
C is the specific heat of water which is 4.18 J/gC
DeltaT is the change in temperature which you can find.
To find the mass, first you must know that the density of water is 1g/mL, meaning that 200 mL has a mass of 200 g. This means that to find the total mass (m in the equation) all you need to do is add the mass of water and NaOH.
200 g + 2.535 g=202.535 g.
To find deltaT you would need to take the final temperature minus the initial temperature.
27.8C-24.2C=3.6C
Then these values can be substituted into the equation:
q=(202.635g)(4.18J/gC)(3.6C)
Q=3049.25 J
Technically this should be rounded off to 1 significant figure (200 mL only had 1), but ignoring signficiant figure rules this should be correct. Also, sometimes other units like calories or kJ may be asked for, meaning that a conversion or alternate c value would be used.
I’m thinking C for this hope it’s right
The Group 3A metals have three valence electrons in their highest-energy orbitals (ns2p1). They have higher ionization energies than the Group 1A and 2A elements, and are ionized to form a 3+ charges. The Group 3A metals are silvery in appearance, and like all metals are good conductors of electricity.
Answer:
1-(tert-butoxy)-2-methylpropane
Note: there is a mistake in formula, the correct formula is (CH₃)₂-CH-CH₂-O-C(CH₃)₃ not (CH₃)₂-CH-CH₂-O(CH₃)₃, because oxygen is a divalent compound.
Explanation:
<em>Structural formula is attached</em>
IUPAC naming rules
1. start numbering the chain from the functional group. In this compound we start from oxygen side.
2. Here we can see that at position 1 there is an oxy group along with a tertiary carbon having three methyl groups. So we write it as 1-tert-butoxy. Which means that there is a methoxy group at position 1 along with a tertiary carbon.
3. At position 2 we can see that there is a methyl group attached to the main chain, so we write it as 2-methyl.
4. Now we count the total number of carbons in the main chain. As we can see that there are 3 carbons in the remaining or parent chain, so we write it as propane
5. So the IUPAC name of the compound will be 1-(tert-butoxy)-2-methylpropane
Hello!
The force on the student is equal to the force the student exerts, so 100N is your answer.
Hope this helped :))