Answer:
a) the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
b) the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Explanation:
a) the polarization the determined wave oscillates the electric field, which is the z axis
As the wave travels on the negative x-axis and the magnetic field is perpendicular, this field goes on the positive y-axis
the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
be) in the case of a polarization in the xi plane the magnetic field must go in the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Answer:
Hence the answer is E inside
.
Explanation:
E inside
so if r1 will be the same then
E
proportional to 1/R3
so if R become 2R
E becomes 1/8 of the initial electric field.
Answer:
Explanation:
The quantity of energy transferred by a force when it is applied to a body and causes that body to move in the direction of the force work.
Answer:
4.25 m/s
Explanation:
They walked the first distance at 5.50 m/s, then the same distance at 3 m/s.
Since the distances are equal, the average speed is simply the average of 5.50 and 3.
(5.50 + 3) / 2 = 4.25
Her average speed over the entire trip is 4.25 m/s.
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m