Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

<span>When reading a buret, the initial reading should be taken from the top of the glassware and the final volume should still taken at the top. If the buret is completely, the initial volume for most buret would be zero. though, there are some where their initial starts at 50 decreasing to zero.</span>
Answer:
20cm
Explanation:
A convex lens has a positive focal length and the object placed in front of it produce both virtual and real image <em>(image distance can be negative or positive depending on the nature of the image</em>).
According to the lens equation
where;
f is the focal length of the lens
u is the object distance
v is the image distance
If the magnification is - 0.6
mag = v/u = -0.5
v = -0.5u
since v = 10cm
10 = -0.5u
u = -10/0.5
u =-20 cm
Substitute u = -20cm ( due to negative magnification)and v = 10cm into the lens formula to get the focal length f

Hence the focal length of the convex lens is 20cm
Answer:
v₁f = 0.5714 m/s (→)
v₂f = 2.5714 m/s (→)
e = 1
It was a perfectly elastic collision.
Explanation:
m₁ = m
m₂ = 6m₁ = 6m
v₁i = 4 m/s
v₂i = 2 m/s
v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i + ((2m₂) / (m₁ + m₂)) v₂i
v₁f = ((m – 6m) / (m + 6m)) * (4) + ((2*6m) / (m + 6m)) * (2)
v₁f = 0.5714 m/s (→)
v₂f = ((2m₁) / (m₁ + m₂)) v₁i + ((m₂ – m₁) / (m₁ + m₂)) v₂i
v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)
v₂f = 2.5714 m/s (→)
e = - (v₁f - v₂f) / (v₁i - v₂i) ⇒ e = - (0.5714 - 2.5714) / (4 - 2) = 1
It was a perfectly elastic collision.