Explanation:
Boyle's law can be stated as the "volume of a fixed mass of a gas varies inversely as the pressure changes if the temperature is constant". It is mathematically expressed as;
P1 V1 = P2 V2
P1 is the initial pressure
V1 is the initial volume
P2 is the final pressure
V2 is the final volume
Charles's law states that the volume of a fixed mass of a gas varies directly as its absolute temperature if the pressure is constant.
It is mathematically expressed as;
=
V and T are volume and temperature respectively
1 and 2 are the initial and final states
Answer:
a) 
Explanation:
a) the cross-sectional area of the hose would be the square of radius times pi. And since the sectional radius is half of its diameter d. We can express the cross-sectional area A1 in term of diameter d1

Answer:


Explanation:
Recall the formula for linear momentum (p):
which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:

Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:

Now by knowing the particle's mass, we use the momentum formula to find its speed:

Answer:
a) 20.29N
b) 19.43N
c) 15N
Explanation:
To find the magnitude of the resultant vectors you first calculate the components of the vector for the angle in between them, next, you sum the x and y component, and finally, you calculate the magnitude.
In all these calculations you can asume that one of the vectors coincides with the x-axis.
a)

b)

c)

Answer:
23.5 mV
Explanation:
number of turn coil 'N' =22
radius 'r' =3.00 cm=>
0.03m
resistance = 1.00 Ω
B= 0.0100t + 0.0400t²
Time 't'= 4.60s
Note that Area'A' = πr²
The magnitude of induced EMF is given by,
lƩl =ΔφB/Δt = N (dB/dt)A
=N[d/dt (0.0100t + 0.0400 t²)A
=22(0.0100 + 0.0800(4.60))[π(0.03)²]
=0.0235
=23.5 mV
Thus, the induced emf in the coil at t = 4.60 s is 23.5 mV