Use the rules of logarithms and the rules of exponents.
... ln(ab) = ln(a) + ln(b)
... e^ln(a) = a
... (a^b)·(a^c) = a^(b+c)
_____
1) Use the second rule and take the antilog.
... e^ln(x) = x = e^(5.6 + ln(7.5))
... x = (e^5.6)·(e^ln(7.5)) . . . . . . use the rule of exponents
... x = 7.5·e^5.6 . . . . . . . . . . . . use the second rule of logarithms
... x ≈ 2028.2 . . . . . . . . . . . . . use your calculator (could do this after the 1st step)
2) Similar to the previous problem, except base-10 logs are involved.
... x = 10^(5.6 -log(7.5)) . . . . . take the antilog. Could evaluate now.
... = (1/7.5)·10^5.6 . . . . . . . . . . of course, 10^(-log(7.5)) = 7.5^-1 = 1/7.5
... x ≈ 53,080.96
Answer:
D) 4.01 miles
Step-by-step explanation:
2.87 miles from Monday + 1.14 miles =4.01 ran on Tuesday
25 because there's 5 people so you take 5 times 5
Answer:
105
Step-by-step explanation:
500 goes into 100, 5 times
21 times 5 is 105
So 21/100 is equal to 105/500
Or you can do
500*0.21=105