Answer:
$5.82
Step-by-step explanation:
Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.
Answer:
y + 9 =
(x + 4)
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
Here m =
and (a, b) = (- 4, - 9) , thus
y - (- 9) =
(x - (- 4) ) , that is
y + 9 =
(x + 4)
Answer:
b
Step-by-step explanation:
it looks like the right anwser
Answer:
The correct answer is option C.
Sin 45 degrees = square root of 2 divided by 2, cos 45 degrees = square root of 2 divided by 2, tan 45 degrees = 1
Step-by-step explanation:
The sin cos tan table used to calculate values of the ratios for different angles can be used for the values.
The table is easily available on the internet.
WE can use a a right-angles isosceles triangle to find the exact values for the angle 45.
The equal sides have length 1. So the thirs side using the pythagoras theorem will be √2.
So
Sin 45 = √2/2
Cos 45 = √2/2
and
Tan 45 = 1
So the correct option is C.