Answer:
2156 J
Explanation:
From the question,
Work done = Combined mass of the bucket and water×height×gravity.
W = (M+m)hg............................. Equation 1
Where M = mass of water, m = mass of the bucket, h = height, g = acceleration due to gravity.
Given: M = 20 kg, m = 2 kg, h = 10 m
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = (20+2)×10×9.8
W = 22×98
W = 2156 J
Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
Answer:
v= 335 m/s
2∆t= 0.75 s
∆x= v.∆t → ∆x= 335×½×0.75 = 125.625 m
Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N
Sound is a form of energy in that it consists fluctuations of air pressure . The speed of the fluctuations is measured in cycles per second or Hertz (HZ)
Intensity is how large the fluctuations are, also known as amplitude and for the sound the unit is decibels of sonic pressure level (dB SPL)