<span>Scientists have documented that the current level of carbon dioxide in the atmosphere is increasing.</span>
We will apply the conservation of linear momentum to answer this question.
Whenever there is an interaction between any number of objects, the total momentum before is the same as the total momentum after. For simplicity's sake we mostly use this equation to keep track of the momenta of two objects before and after a collision:
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
Note that v₁ and v₁' is the velocity of m₁ before and after the collision.
Let's choose m₁ and v₁ to represent the bullet's mass and velocity.
m₂ and v₂ represents the wood block's mass and velocity.
The bullet and wood will stick together after the collision, so their final velocities will be the same. v₁' = v₂'. We can simplify the equation by replacing these terms with a single term v'
m₁v₁ + m₂v₂ = m₁v' + m₂v'
m₁v₁ + m₂v₂ = (m₁+m₂)v'
Let's assume the wood block is initially at rest, so v₂ is 0. We can use this to further simplify the equation.
m₁v₁ = (m₁+m₂)v'
Here are the given values:
m₁ = 0.005kg
v₁ = 500m/s
m₂ = 5kg
Plug in the values and solve for v'
0.005×500 = (0.005+5)v'
v' = 0.4995m/s
v' ≅ 0.5m/s
Answer:
The maximum volume is 1417.87 
Explanation:
<u>Optimization Using Derivatives</u>
We have a 24x30 inch piece of metal and we need to make a rectangular box by cutting a square from each corner of the piece and bending up the sides. The width of the piece is 24 inches and its length is 30 inches
When we cut a square of each corner of side x, the base of the box (after bending up the sides) will be (24-2x) and (30-2x), width and length respectively. The volume of the box is

Operating

To find the maximum value of V, we compute the first derivative and equate it to zero

Simplifying by 12

Completing squares


We have two values for x


The first value is not feasible because it will produce a negative width (24-2(13.58))=-6.16
We'll keep only the solution

The width is

The length is

And the height

The maximum volume is

Answer:
Because the hiker walked directly west and then directly north the two legs of the hike forms a right triangle. Therefore we can use the Pythagorean Theorem to solve this problem.
c=5
The hiker is 5km from camp and should head in a generally south-east direction
Answer:
no
Explanation:
the inertia of an object does not make it to come to rest, this is normally caused by friction