I found the answer sheet online for you
Answer:
A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position.
Explanation:
Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:

Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:

Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
Compared to the pucks given, the pair of pucks will rotate at the same rate.
Answer: Option A
<u>Explanation:</u>
The law of conservation of the angular momentum expresses that when no outer torque follows upon an article, no difference in angular momentum will happen. At the point when an item is turning in a shut framework and no outside torques are applied to it, it will have no change in angular momentum.
The conservation of the angular momentum clarifies the angular quickening of an ice skater as she brings her arms and legs near the vertical rotate of revolution. In the event, that the net torque is zero, at that point angular momentum is steady or saved.
By twice the mass yet keeping the speeds unaltered, also twice the angular momentum's to the two-puck framework. Be that as it may, we likewise double the moment of inertia. Since
, the turning rate of the two-puck framework must stay unaltered.
Answer:
c. As we gain mass, the force of gravity on us increases