1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
5

La barbería El Caleño, tiene en promedio 120 clientes a la semana a

Mathematics
1 answer:
Luba_88 [7]3 years ago
7 0

Queremos maximizar el precio de tal forma que los ingresos no disminuyan.

Ese maximo precio es: $14,040.6

Sabemos que actualmente el precio es:

p = $6,000

El número de clientes es:

C = 120

Actualmente los ingresos son el producto de esos dos números, es decir:

ingresos = $6,000*120 = $720,000

Ahora sabemos que por cada incremento de $700 en el precio, el número de clientes decrece en 10.

Entonces podemos escribir el número de clientes como una ecuación lineal.

C(p) = a*p + b

tal que tenemos dos puntos en esa linea:

($6,000, 120)

($6,700, 110)

La pendiente es:

a = \frac{110 - 120}{\$6,700 - \$6,000} = \frac{-10}{\$ 700}

Entonces tenemos:

C(p) = (-10/$700)*p + b

Sabemos que:

C($6,000) = 120 = (-10/$700)*$6,000 + b

                     120 = -85.71 + b

                     120 + 85.71 = b =

Entonces la ecuación lineal es:

C(p) = (-10/$700)*p + 205.71

Los ingresos serán dados por:

ingresos = C(p)*p = (-10/$700)*p^2 + 205.71*p

Y queremos maximizar p de tal forma que esto sea igual a lo que obtuvimos antes:

(-10/$700)*p^2 + 205.71*p = $720,000

Entonces debemos resolver la ecuación cuadratica:

(-10/$700)*p^2 + 205.71*p - $720,000 = 0.

Las soluciones son dadas por la formula de Bhaskara.

p = \frac{-205.71 \pm \sqrt{(205.71)^2 - 4*(-10/\$ 700)*\$ 720,000} }{2*(-10/\$ 700)} \\\\p = \frac{-205.71 \pm 195.45}{(-20/\$ 700)}

La solución de maximo valor es:

p = (-205.71 - 195.45)/(-20/$700) = $14,040.6

Sí quieres aprender más, puedes leer.

brainly.com/question/8926135

You might be interested in
The segment drawn from a vertex in a triangle to the midpoint of the opposite side.
AVprozaik [17]

check the picture below.

3 0
3 years ago
Read 2 more answers
if a taxi charges $3.50 for the first on-fifth of a mile, then $0.55 cents for each additional one-fifth mile, how far can one t
34kurt
Let's forget for the tie being the cost ($3.5)of the 1st fifth of a mile:

Taxi charge excluding $3.5, is $13.95 - $3.5 = $10.45.

If each of the 5th (1/5) of a mile costs $0.55, then with $10.45 we can drive:
10.45/0.55 = 19 fifth of a mile. Add to that the 1st fifth = 20 fifth of a mile
 20 fifth = 20 x 1/5 = 4 miles (answer)

7 0
3 years ago
Due right now help ill mark you brainly if its correct
AleksandrR [38]

Answer:

all but 1/6

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
The area of a rectangle is 4.9 square units. The length is 2.5 units and the width is y units. What is the value of y?
iris [78.8K]
1.96, if you multiply that by the length, (which is 2.5) then you will get the area of 4.9 hope this helps
4 0
3 years ago
Read 2 more answers
What do I do when a number line says 1 1 instead of 0 To one
Vanyuwa [196]
You do the number line normal but with 11 in the front
8 0
2 years ago
Read 2 more answers
Other questions:
  • Will give brainliest
    14·1 answer
  • Which is an equation of the line through (-8, -4) and (4, 5)?
    10·2 answers
  • Whick scenario is most likely the one shown on the graph?​
    5·2 answers
  • Jake walks a mile to work. If Jake has already walked two-fifths of a mile, how many more feet must he walk to get to work?
    6·1 answer
  • the price of a car was reduced to 25% off the car is now £14.625 work out what the car was before it was reduced
    8·1 answer
  • Find the length of side x to the nearest tenth
    7·1 answer
  • What is the slope indicated in the table below?
    9·1 answer
  • Solve the<br> equation:<br> 6x = -78
    8·2 answers
  • BRAINLIEST IF CORRECT<br> In arithmetic, variables look like ___.
    15·1 answer
  • Question 18
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!