It can solidify, it depends on the tempeture.
Answer:
840 cm
Explanation:
Note: A hydraulic press operate based on pascal's principle.
From pascal's principle
W₁/d₁ = W₂/d₂...................... Equation 1
Where W₁ and W₂ are the first and second weight, and d₁ and d₂ are the first and second diameter of the piston.
make d₁ the subject of the equation
d₁ = W₁×d₂/W₂................ Equation 2
Given: W₁ = 2100 kg, W₂ = 25 kg, d₂ = 10 cm = 0.1 m.
Substitute these values into equation 2
d₁ = 2100(0.1)/25
d₁ = 8.4 m
d₁ = 840 cm
Answer:
sin 2θ = 1 θ=45
Explanation:
They ask us to prove that the optimal launch angle is 45º, for this by reviewing the parabolic launch equations we have the scope equation
R = Vo² sin 2θ / g
Where R is the horizontal range, Vo is the initial velocity, g the acceleration of gravity and θ the launch angle. From this equation we see that the sine function is maximum 2θ = 90 since sin 90 = 1 which implies that θ = 45º; This proves that this is the optimum angle to have the maximum range.
We calculate the distance traveled for different angle
R = vo² Sin (2 15) /9.8
R = Vo² 0.051 m
In the table are all values in two ways
Angle (θ) distance R (x)
0 0 0
15 0.051 Vo² 0.5 Vo²/g
30 0.088 vo² 0.866 Vo²/g
45 0.102 Vo² 1 Vo²/g
60 0.088 Vo² 0.866 Vo²/g
75 0.051 vo² 0.5 Vo²/g
90 0 0
See graphic ( R Vs θ) in the attached ¡, it can be done with any program, for example EXCEL
Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s