1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
3 years ago
12

For the following exercises, use logarithmic differentiation to find dy/dx.

Mathematics
1 answer:
kondaur [170]3 years ago
8 0

If y=x^{\log_2(x)}, then taking the logarithm of both sides gives

\ln(y) = \ln\left(x^{\log_2(x)}\right) = \log_2(x) \ln(x)

Differentiate both sides with respect to x :

\dfrac{d\ln(y)}{dx} = \dfrac{d\log_2(x)}{dx}\ln(x) + \log_2(x)\dfrac{d\ln(x)}{dx}

\dfrac1y \dfrac{dy}{dx} = \dfrac{d\log_2(x)}{dx}\ln(x) + \dfrac{\log_2(x)}{x}

Now if z=\log_2(x), then 2^z=x. Rewrite

2^z = e^{\ln(2^z)} = e^{\ln(2)z}

Then by the chain rule,

\dfrac{d2^z}{dx} = \dfrac{dx}{dx}

\dfrac{de^{\ln(2)z}}{dx} = 1

e^{\ln(2)z} \ln(2) \dfrac{dz}{dx}= 1

\dfrac{dz}{dx} = \dfrac{1}{e^{\ln(2)z}\ln(2)}

\dfrac{dz}{dx} = \dfrac{1}{2^z \ln(2)}

\dfrac{d\log_2(x)}{dx} = \dfrac{1}{\ln(2)x}

So we have

\dfrac1y \dfrac{dy}{dx} = \dfrac{\ln(x)}{\ln(2)x}+ \dfrac{\log_2(x)}{x}

\dfrac1y \dfrac{dy}{dx} = \dfrac{\log_2(x)}{x}+ \dfrac{\log_2(x)}{x}

\dfrac1y \dfrac{dy}{dx} = \dfrac{2\log_2(x)}{x}

\dfrac1y \dfrac{dy}{dx} = \dfrac{\log_2(x^2)}{x}

\dfrac{dy}{dx} = \dfrac{y\log_2(x^2)}{x}

Replace y :

\dfrac{dy}{dx} = \dfrac{x^{\log_2(x)}\log_2(x^2)}{x}

\dfrac{dy}{dx} = x^{\log_2(x)-1}\log_2(x^2)

You might be interested in
Math Problem Solving<br>statistics and probability​
luda_lava [24]

Answer:

Standard Deviation = 3.22

Variance = 10.36

Step-by-step explanation:

x          P(x)           x × P(x)              x²             x² × P(x)

19         0.20           3.8                  361               72.2

10         0.20             2                   100                20

11          0.30           3.3                   121                36.3

12         0.20           2.4                   144               28.8

13          0.10            1.3                   169                16.9

____________________________________________

                            12.8                                         174.2            => Total

<em><u>Mean Formula</u></em>

\mu_x = \sum(x \times P(x)) = 12.8

\mu_x^2 = 163.84

<em><u>Variance Formula</u></em>

\sigma _x^2 = \sum[x^2 \times P(x)] - \mu_x^2      

   = 174.2- 163.84\\\\=10.36

<em><u>Standard Deviation Formula</u></em>

Standard\ deviation, \ \sigma_x = \sqrt{Variance}

                                   =\sqrt{10.36}\\\\=3.218      

   

5 0
3 years ago
Evaluate the expression when a = –1.4 and b = –2.7.     |a| + b
s344n2d4d5 [400]
For the first one the answer is B
6 0
3 years ago
Read 2 more answers
20+30-10+40=80<br>true or false​
Katena32 [7]

Answer:

true

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
F(k)=k^2-3. Find f^-1(k)<br><br> Please help, need for tomorrow.
inn [45]
If u need that answer go on google search up math Papa pre algebra calculator.
3 0
3 years ago
What is 10* 3.8 exponent of 6 in scientific notation
Tju [1.3M]
3.8 x 3.8 x 3.8 x 3.8 x 3.8 x 3.8 = 3010.9363843010.936384 x 10 = 30109.36384
30109.36384 = 3.01094 × 10^<span>4
</span>

hope this helps

8 0
3 years ago
Other questions:
  • Ionic bonds occur between?
    12·1 answer
  • Which of the following equations represents the relationship between the distance traveled and the elapsed time
    13·1 answer
  • 2x+-3y · 6e<br> My friend needs to know it, it would be nice if you can answer it for him
    7·2 answers
  • Evaluate the expression for the given values of the variables.
    5·2 answers
  • What is this phrase in numerical expression
    10·1 answer
  • A linear equation that passes through (-6,-5) and parallel to 2x-3y=12
    7·1 answer
  • What is the are of this trapezoid please help
    9·1 answer
  • If the figure is translated 4 units and 2 units down what are the coordines
    8·1 answer
  • Help Please! :((( answer correctly please
    15·2 answers
  • The roof of a home rises vertically by 7 ft through a horizontal distance of 15 ft. Find the pitch (slope) of the roof.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!