1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
9

Ethan bought 0.7kg of tomatoes. If the tomatoes sell for 1.96/kg, how much did he pay?

Mathematics
1 answer:
gayaneshka [121]3 years ago
4 0
The answer is 1.37
1.96/.7=1.37
You might be interested in
What is .0002 in scientific notation
Orlov [11]

Answer:

2×10−4

Step-by-step explanation:

To change 0.0002 to scientific notation, move the decimal to the right 4 places so that you get 2. The exponent on the base 10 will be -4 because the decimal was moved to the right 4 places

8 0
3 years ago
Read 2 more answers
What is 2 - 3y is less than or equal to 12? That was the question.
Ivenika [448]

Answer:

2-3y\leq 12\\-2+2-3y\leq 12-2\\-3y\leq 10\\\frac{-3}{3}y\leq  \frac{10}{3} \\y\geq \frac{10}{3}

Step-by-step explanation:

8 0
3 years ago
What binomial do you have to add to the polynomial:
marshall27 [118]

Answer:

a)  -2x^2+5xy

b)  -3y^2+5xy

Step-by-step explanation:

<u>Part (a)</u>

Given polynomial  :2x^2+3y^2-5xy+1

The binomial that should be added to the given polynomial to get a polynomial that does not contain the variable x is:

-2x^2+5xy

(2x^2+3y^2-5xy+1)+(-2x^2+5xy)

=2x^2+3y^2-5xy+1-2x^2+5xy

=2x^2-2x^2+3y^2-5xy+5xy+1

=3y^2+1

<u>Part (b)</u>

Given polynomial  :2x^2+3y^2-5xy+1

The binomial that should be added to the given polynomial to get a polynomial that does not contain the variable y is:

-3y^2+5xy

(2x^2+3y^2-5xy+1)+(-3y^2+5xy)

=2x^2+3y^2-5xy+1-3y^2+5xy

=2x^2+3y^2-3y^2-5xy+5xy+1

=2x^2+1

7 0
2 years ago
I need help on question 8 asap
Mekhanik [1.2K]

Answer:

-13

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Integrate e^x(sin(x) cos(x))
Karo-lina-s [1.5K]
I=\int e^x(\sin(x)\cos(x))dx=\int e^x(\frac{1}{2}\sin(2x))dx=\frac{1}{2}\int e^x\sin(2x)dx

\text{If }u=\sin(2x)\to du=2\cos(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\&#10;\text{Using }\int u\,dv=uv-\int v\,du:\\\\&#10;I=\frac{1}{2}(e^x\sin(2x)-\int e^x(2\cos(2x))dx)\\\\&#10;2I=e^x\sin(2x)-2\underbrace{\int e^x\cos(2x)dx}_{I_2}

Looking for I_2:

\text{If}~u=\cos(2x)\to du=-2\sin(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\&#10;I_2=e^x\cos(2x)-\int e^x(-2\sin(2x))dx\\\\ I_2=e^x\cos(2x)+2\int e^x(\sin(2x))dx\\\\  I_2=e^x\cos(2x)+2\int e^x(2\sin(x)\cos(x))dx\\\\ I_2=e^x\cos(2x)+4\int e^x(\sin(x)\cos(x))dx=e^x\cos(2x)+4I

Replacing:

2I=e^x\sin(2x)-2I_2\iff\\\\2I=e^x\sin(2x)-2(e^x\cos(2x)+4I)\iff\\\\&#10;2I=e^x\sin(2x)-2e^x\cos(2x)-8I\iff\\\\&#10;10I=e^x\sin(2x)-2e^x\cos(2x)\iff\\\\&#10;I=\dfrac{e^x}{10}(\sin(2x)-2\cos(2x))\\\\&#10;\boxed{\int e^x(\sin(x)\cos(x))dx=\dfrac{e^x}{10}(\sin(2x)-2\cos(2x))+C}
6 0
4 years ago
Other questions:
  • G(n)=n-4 h(n) = 3n - 2<br> Find g(9) × h(9)
    9·1 answer
  • What is 28/49 in simplest form?
    7·1 answer
  • When elenas car moves forward such that each tire makes one full rotation the car has traveled 72 inches.How many full rotations
    8·1 answer
  • Help me plz quick only 5 mins​
    9·1 answer
  • 7/12 + 6/12 + 2/12 =
    9·2 answers
  • Help please!!! as part of a summer job, you stack crates. the crates have the same length and width but have heights of 1 or 2 f
    10·1 answer
  • Which pairs of angles are alternate exterior angles? Choose all answers that are correct.
    8·2 answers
  • 45% of 40 is 18% of what number?
    11·2 answers
  • Karl needs to paint a flagpole that is so feet tall it takes 1 quart of paint to cover every 20 feet of the flagpole, How many q
    13·1 answer
  • If you roll a 6-sided die 6 times, what is the best prediction possible for the number of times
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!