Answer:
The time is 0.5 sec.
Explanation:
Given that,
Voltage V= 12.00 V
Inductance L= 1.20 H
Current = 3.00 A
Increases rate = 8.00 A
We need to calculate change in current

We need to calculate the time interval
Using formula of inductor


Where,
= change in current
V = voltage
L = inductance
Put the value into the formula


Hence, The time is 0.5 sec.
Before the impact, let the velocity of the baseball was v m/s.
After being hit by the bat its velocity is -2v
So, change in velocity, Deltav=v-(-2v)=3v
Acceleration is defined as the rate of change in velocity, i.e. actual change in velocity divided by the time taken to change it. Time taken to change velocity is the time of actual contact of the bat and ball, i.e. 0.31 s.
a=(Deltav)/(Deltat)
=(3v)/0.37
Therefore, a/v=3/0.31=9.7 s^-1
So, the ratio of acceleration of the baseball to its original velocity is 9.7.
Answer:
Yes. Inertia keeps the speed maintained though my feet leave the ground.
Explanation:
Inertia is the resistance to the change in position of any object this means this resistance will keep me traveling at 30 km/s relative to the sun. If the person wants to change the position we apply force to do that because inertia is opposing us to not do that. We are always traveling with 30km/s relative to sun due to inertia.
In cold winter day, the body temperature falls down from normal temperature of 98.6°F (37°C) to 95°F (35°C). In winter body losses heat faster than it generates heat. If the temperature fall further below 95°F (35°C), it is emergency condition known as Hypothermia. One has to consult doctor in this case.
In summer hot days, body evaporates water in the form of sweat, in order to remain itself cool. Rise of temperature up to 100°F is normal. It is recommended to hydrate body to maintain temperature in summer days.