If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
In a circuit having 2 lamps are connected in parallel to a battery
then the two lamps will be having the same potential as the battery
i.e

As per Ohm's law,
and 
In other words, each lamp's current is inversely related to its individual resistance. We only know the current in one of the bulbs in this specific instance. We would therefore need further information in order to calculate the current in the other light. Therefore, there isn't enough data to make a statement.
Under the assumption that all physical parameters, including temperature, remain constant, Ohm's law asserts that "the voltage across a conductor is directly proportional to the current flowing through it".
Learn more about Ohm's law here
brainly.com/question/2264542
#SPJ4
Answer:
0.0006091222 m
Explanation:
q = Charge = 42 pC
V = Voltage = 620 V
= Permittivity of free space = 
Electric potential is given by (at r = R)

The radius of the drop is 0.0006091222 m
The Magnitude of the Vector is 10.39m and the direction of the vector is - 46.7°.
<u>Explanation:</u>
GIven dx=7.14m and dy= -7.55m,
The Magnitude of the Vector=
Magnitude d=
.
d=
d=
d= 10.39m.
Direction Ф = 

=
=
(-1.06)
Ф = - 46.7°.
Our eyes perceive different wavelengths of light as the rainbow hues of colors. Red light has relatively long waves, around 700 nm long. Blue and purple light have short waves, around 400 nm. Shorter waves vibrate at higher frequencies and have higher energies.
Hope it helps.