A factorization of
is
.
<h3>What are the properties of roots of a polynomial?</h3>
- The maximum number of roots of a polynomial of degree
is
. - For a polynomial with real coefficients, the roots can be real or complex.
- The complex roots of a polynomial with real coefficients always exist in a pair of conjugate numbers i.e., if
is a root, then
is also a root.
If the roots of the polynomial
are
, then it can be factorized as
.
Here, we are to find a factorization of
. Also, given that
and
are roots of the polynomial.
Since
is a polynomial with real coefficients, so each complex root exists in a pair of conjugates.
Hence,
and
are also roots of the given polynomial.
Thus, all the four roots of the polynomial
, are:
.
So, the polynomial
can be factorized as follows:
![\{x-(-2+i\sqrt{7})\}\{x-(-2-i\sqrt{7})\}\{x-(1-i\sqrt{3})\}\{x-(1+i\sqrt{3})\}\\=(x+2-i\sqrt{7})(x+2+i\sqrt{7})(x-1+i\sqrt{3})(x-1-i\sqrt{3})\\=\{(x+2)^2+7\}\{(x-1)^2+3\}\hspace{1cm} [\because (a+b)(a-b)=a^2-b^2]\\=(x^2+4x+4+7)(x^2-2x+1+3)\\=(x^2+4x+11)(x^2-2x+4)](https://tex.z-dn.net/?f=%5C%7Bx-%28-2%2Bi%5Csqrt%7B7%7D%29%5C%7D%5C%7Bx-%28-2-i%5Csqrt%7B7%7D%29%5C%7D%5C%7Bx-%281-i%5Csqrt%7B3%7D%29%5C%7D%5C%7Bx-%281%2Bi%5Csqrt%7B3%7D%29%5C%7D%5C%5C%3D%28x%2B2-i%5Csqrt%7B7%7D%29%28x%2B2%2Bi%5Csqrt%7B7%7D%29%28x-1%2Bi%5Csqrt%7B3%7D%29%28x-1-i%5Csqrt%7B3%7D%29%5C%5C%3D%5C%7B%28x%2B2%29%5E2%2B7%5C%7D%5C%7B%28x-1%29%5E2%2B3%5C%7D%5Chspace%7B1cm%7D%20%5B%5Cbecause%20%28a%2Bb%29%28a-b%29%3Da%5E2-b%5E2%5D%5C%5C%3D%28x%5E2%2B4x%2B4%2B7%29%28x%5E2-2x%2B1%2B3%29%5C%5C%3D%28x%5E2%2B4x%2B11%29%28x%5E2-2x%2B4%29)
Therefore, a factorization of
is
.
To know more about factorization, refer: brainly.com/question/25829061
#SPJ9
Definitely, its volume is greater than the original cylinder. Hope it help!
Compute successive differences of the terms.
If they are all the same, the sequence is arithmetic and the common difference is the difference you have found.
If successive pairs of differences have the same ratio, the sequence is geometric and the common ratio is the ratio you have determined.
Example of arithmetic sequence:
1, 3, 5, 7
Successive differences are 3-1 = 2, 5-3 = 2, 7-5 = 2. All the differences are 2, which is the common difference of the sequence.
Example of geometric sequence:
1, -3, 9, -27
Successive differences are -3-1 = -4, 9-(-3) = 12, -27-9 = -36. These are not the same, so the sequence is not arithmetic. Ratios of successive pairs of differences are 12/-4 = -3, -36/12 = -3. These are the same, so the sequence is geometric with common ratio -3.
The tree is 25 feet tall. Given the height of the stick and the shadow it cast, the angle formed by the sun and the stick's height can be obtained by taking the Inverse Tangent of 3/5. This is equal to 30.93. This angle is equal to the angle formed by the sun and the tree's height. Using the tangent formula, Tan (30.93)=tree's shadow (15 ft)/ height of the tree, giving the answer 25 feet.
Well there can be two different solutions for this but i will choose the easier one. Obviously one requires a system of equations which obviously will involve a lot of thinking and some good algebra solving in order for them to solve.
So we can just keep adding the distance as we know they are in different directions. 49 + 65 = 114. So 114 * 4.5 = 513 miles. SO after around 4.5 hours they will be 513 miles apart.