Answer:
Potential energy only
Explanation:
at the top of its swing the pendulum stops moving , (therefore it has no KINETIC energy) thus all of the energy is stored as potential energy.
<span>Sea breeze can happen during hot summer days because of the
uneven heating rates of water and land.
The land surface heats up faster than the surface of the water during the
day. At this rate, the air above the
land grows warmer than the air atop the ocean. Warmer air is always lighter
than cooler air. As a consequence, warm air is pushed upward causing it to
rise. With this, warmer air rises over the land. As warm air rises over the
land, cooler air over the ocean flows over the land surface to change or
replace the rising warm air.</span>
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
When it crossed the sternum and is snug around the lap
Answer:
v’= 9.74 m / s
Explanation:
The Doppler effect is due to the relative movement of the sound source and the receiver of the sound, in this case we must perform the exercise in two steps, the first to find the frequency that the bat hears and then the frequency that the audience hears that also It is sitting.
Frequency shift heard by the murciela, in case the source is still and the observer (bat) moves closer
f₁ ’= f₀ (v + v₀)/v
Frequency shift emitted by the speaker in the bat, in this case the source is moving away from the observer (public sitting) that is at rest
f₂’= f₁’ v/(v - vs)
Note that in this case the bat is observant in one case and emitter in the other, called its velocity v’
v’= vo = vs
Let's replace
f₂’= f₀ (v + v’)/v v/(v -v ’)
f₂’= f₀ (v + v’) / (v -v ’)
(v –v’ ) f₂’ / f₀ = v + v ’
v’ (1+ f₂’ /f₀) = v (f₂’/fo - 1)
v’ (1 + 1.059) = 340 (1.059 - 1)
v’= 20.06 / 2.059
v’= 9.74 m / s