1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
6

An impala is an African antelope capable of a remarkable vertical leap. In one recorded leap, a 45 kg impala went into a deep cr

ouch, pushed straight up for 0.21 s , and reached a height of 2.5 m above the ground
Physics
1 answer:
zzz [600]3 years ago
8 0

Two missing questions:

<em>"A) To achieve this vertical leap, with what force did the impala push down on the ground? </em>

<em> Express your answer to two significant figures and include the appropriate units. </em>

<em> B) What is the ratio of this force to the antelope's weight? </em>

<em>Express your answer using two significant figures."</em>

A) 1500 N

First of all, we have to calculate the velocity at which the impala jumps upward. This can be done by using the motion equation:

v^2-u^2 = 2ah

where

v = 0 is the velocity of the impala as it reaches the maximum height

u is the initial velocity of the impala

a = g = -9.8 m/s^2 is the acceleration of gravity

h = 2.5 m is the maximum height reached

Solving  for u,

u=\sqrt{-2ah}=\sqrt{-2(-9.8)(2.5)}=7 m/s

Now we know that the impulse on the impala is equal to its change in momentum, so we can write:

I=\Delta p \rightarrow F \Delta t = m \Delta v

where

F is the force exerted by the ground on the impala

\Delta t = 0.21 s is the duration of the push

m = 45 kg is the mass

\Delta v = 7 m/s is the gain in velocity of the impala

Solving for F,

F=\frac{m\Delta v}{\Delta t}=\frac{(45)(7)}{0.21}=1500 N

And according to Newton's third law, the force exerted by the impala on the ground is equal (and opposite) to the force exerted by the ground on the impala, so still 1500 N.

B) 3.4

The weight of the impala is given by

W=mg

where

m = 45 kg is its mass

g = 9.8 m/s^2 is the acceleration of gravity

Substituting,

W=(45)(9.8)=441 N

So the ratio of the force calculated at point A) to the weight of the impala is

r=\frac{F}{W}=\frac{1500}{441}=3.4

You might be interested in
How do scientist know that seismic waves can be either compressional or transverse
nasty-shy [4]
Hey there! 

<span>Scientists know that seismic waves can be either compressional or transverse because there are horizontal and vertical movements during an earthquake. Horizontal movements are compressional while vertical movements are transverse. 

Thank you!</span>
8 0
4 years ago
PLEASE HELP! I NEED ANSWER SOON
murzikaleks [220]

Answer:

1. ozone

3. carbon monoxide

Explanation:

That is it

3 0
3 years ago
If the coefficient of kinetic friction between tires and dry pavement is 0.84, what is the shortest distance in which you can st
liberstina [14]

Answer:

The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m

Explanation:

Given;

coefficient of kinetic friction, μ = 0.84

speed of the automobile, u = 29.0 m/s

To determine the  the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;

v² = u² + 2ax

where;

v is the final velocity

u is the initial velocity

a is the acceleration

x is the shortest distance

First we determine a;

From Newton's second law of motion

∑F = ma

F is the kinetic friction that opposes the motion of the car

-Fk = ma

but, -Fk = -μN

-μN = ma

-μmg = ma

-μg = a

- 0.8 x 9.8 = a

-7.84 m/s² = a

Now, substitute in the value of a in the equation above

v² = u² + 2ax

when the automobile stops, the final velocity, v = 0

0 = 29² + 2(-7.84)x

0 = 841 - 15.68x

15.68x = 841

x = 841 / 15.68

x = 53.64 m

Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m

4 0
3 years ago
A -4.00 nC point charge is at the origin, and a second -5.50 nC point charge is on the x-axis at x = 0.800 m.
mafiozo [28]

Answer:

a. f=1.22*10^{-15} N

b. f=53.6*10^{-17} N

Explanation:

The force existing between two charges is given as

f=\frac{kq_{1}q_{2}}{r^{2}}

where q= charge,

k=constant

r= distance between the two charges

Note: this force can either be repulsive or attractive force depending on the charges involve. it is repulsive if they are similar charge and it is attractive if it is opposite charges.

Also the charge of an electron is

-1.602*10^{-19}

A. we first determine the magnitude force between the -4nC and the electron

f_{21}=\frac{kq_{1}q_{2}}{r^{2}}\\f_{21}=\frac{9*10^{10} 4*10^{-9} *1.602*10^{-19} }{0.2^{2}}\\f_{21}=\frac{57.67*10^{-18} }{0.04}\\f_{21}=1.44*10^{-15}Ni

this force will be repulsive force and it points away from the electron i.e points towards the +ve x-axis

for the -5.50nC the distance between them is 0.600m as can be seen in the diagram the magnitude of the force is

f_{23} =\frac{kq_{1}q_{2}}{r^{2}}\\f_{23}=\frac{9*10^{10} 5.50*10^{-9} *1.602*10^{-19} }{0.6^{2}}\\f_{23}=\frac{79.3*10^{-18} }{0.36}\\f_{23}=-(0.22*10^{-15})N i

this this force will be repulsive force and it points away from the electron i.e points towards the -ve x-axis.

The total net force on the electron is thus

f=f_{21}+f_{23}\\ f=1.44*10^{-15}-0.22*10^{-15}\\  f=1.22*10^{-15} N

b. at  distance of x=1.20m, this is shown on the diagram below (attachment 2)

we first determine the magnitude force between the -4nC and the electron

f_{21}=\frac{kq_{1}q_{2}}{r^{2}}\\f_{21}=\frac{9*10^{10} 4*10^{-9} *1.602*10^{-19} }{1.2^{2}}\\f_{21}=\frac{57.67*10^{-18} }{1.44}\\f_{21}=4.0*10^{-17}Ni

this force will be repulsive force and it points away from the electron i.e points towards the +ve x-axis.

for the -5.50nC the distance between them is 0.4m as can be seen in the diagram the magnitude of the force is

f_{23} =\frac{kq_{1}q_{2}}{r^{2}}\\f_{23}=\frac{9*10^{10} 5.50*10^{-9} *1.602*10^{-19} }{0.4^{2}}\\f_{23}=\frac{79.3*10^{-18} }{0.16}\\f_{23}=49.6*10^{-17}Ni

this this force will be repulsive force and it points away from the electron i.e points towards the +ve x-axis.

The total net force on the electron is thus

f=f_{21}+f_{23}\\ f=4.0*10^{-15}+49.6*10^{-17}\\  f=53.6*10^{-17} N

8 0
3 years ago
Bird bones have air pockets in them to reduce their weight–this also gives them an average density significantly less than that
lakkis [162]

Answer:

a)39ml

b)39g

c)1.1g/ml

Explanation:

Hello!

To solve this exercise use the following steps

1. When Archimedes discovered how to determine the irregular volume of an object by weighing it in the air and in an algua, he found that its volume is equal to the ratio between the differences of the masses (heavy in the air and in the water) and the density of the water (= 1g / ml)

V=\frac{43g-3.6g}{1g/ml} =39.4ml

2.as the principle of archimedes says, the displaced volume of water is equal to the volume of the bone which means that 39.4ml of water was displaced, taking into account that the density of water is the ratio between mass and volume we can determine the displaced body of water

density=\frac{m}{V} \\m=V(density)\\m=(39ml)(1g/ml)=39g

3. we use the density equation to find the bone density

density=\frac{43g}{39ml} =1.1g/ml

8 0
3 years ago
Other questions:
  • If the distance from the moon to the satellite is 2.6 × 106 m, what is the mass of the satellite?
    5·1 answer
  • What is the magnitude of the gravitational field midway between the earth and moon? ignore effects of the sun.
    11·1 answer
  • Of the five characteristics of living things, which one is required for the species to survive but does not have to apply to an
    9·1 answer
  • The difference between heat and temperature
    12·2 answers
  • Several wires of varying thickness are all made of the same material and all have the same length. If the wires are arranged in
    14·1 answer
  • A magnetic field is passing through a loop of wire whose area is 0.020 m2. The direction of the magnetic field is parallel to th
    11·1 answer
  • Gamma rays
    14·1 answer
  • Frictional force is ___of area of contact​
    6·1 answer
  • What determines a wave’s velocity? a The number of waves per a period of time. b The amplitude of the wave. c The medium it trav
    15·1 answer
  • .Which equation represents the most accurate model of cellular respiration? Note: C6H12O6 is sugar.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!