Answer:
2KOH(aq) + NiSO₂(aq) → K₂SO₄(aq) + NiOH₂(s)
Explanation:
This reaction is an example of a <em>double-replacement reaction </em>where the cations of two compounds exchange with its anions. In the reaction:
KOH(aq) + NiSO₄(aq)
There are produced K₂SO₄ and NiOH₂ salts (The last one is insoluble, its state is (s) but K₂SO₄ is very soluble, its state is (aq). The unbalanced reaction is:
KOH(aq) + NiSO₄(aq) → K₂SO₄(aq) + NiOH₂(s)
To balance the potassiums:
<h3>
2KOH(aq) + NiSO₂(aq) → K₂SO₄(aq) + NiOH₂(s)</h3>
And now, the reaction is balanced
Answer:
An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between two species. An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.
Explanation:
Answer:
The value of he change in Gibbs free energy ΔG = - 18.083 KJ
Explanation:
Given data
The concentration of glucose inside a cell is (P) = 0.12 m M
The concentration of glucose outside a cell is (R) = 12.9 m M
No. of moles = 1.5 moles
The change in Gibbs free energy
ΔG = RT ㏑
ΔG = 8.314 × 310 ㏑
ΔG = - 12.055 
Since No. of moles = 1.5 moles
Therefore
ΔG = - 12.055 × 1.5
ΔG = - 18.083 KJ
This the value of he change in Gibbs free energy.
The neutral atom of lead must have 82 protons while ions can have b or less than 82.
The atomic number of an element is the number of protons in the nucleus of the element.
Also, for neutral atoms, the number of protons equals the number of electrons.
In ionic form, the number of protons/electrons of an atom may vary and be different from that of the neutral form.
Positive charges mean that the ion has less proton than its neutral version while negative charges mean that it has more electrons than its neutral version.
Thus, the neutral atom of lead will contain an equal number of protons as the electrons while its ionic form can have more or less than 82 protons.
More on atoms can be found here: brainly.com/question/803445?referrer=searchResults
Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.