Answer:
V = 0.5 L
Explanation:
Given data:
Moles of nitrogen = 2.23×10⁻² mol (0.0223 mol)
Temperature = 273 K
Pressure = 1 atm
Volume = ?
Solution:
PV = nRT
V = nRT / P
V = 0.0223 mol × 0.0821 atm. mol⁻¹. L . k⁻¹ × 273 K / 1 atm
V = 0.5 L
Answer:
A
Explanation:
Friction is a force that opposes motion.
You have to move higher; potential energy depends on height and mass.
Answer:
0.22 mol HClO, 0.11mol HBr.
0.25mol NH₄Cl, 0.12 mol HCl
Explanation:
A buffer is defined as a mixture in solution between weak acid and its conjugate base or vice versa.
Potassium hypochlorite (KClO) could be seen as conjugate base of HClO (Weak acid). That means the addition of <em>0.22 mol HClO </em>will convert the solution in a buffer. HBr reacts with KClO producing HClO, thus, <em>0.11mol HBr</em> will, also, convert the solution in a buffer. 0.23 mol HBr will react completely with KClO and in the solution you will have only HClO, no a buffering system.
Ammonia (NH₃) is a weak base and its conjugate base is NH₄⁺. That means the addition of <em>0.25mol NH₄Cl</em> will convert the solution in a buffer. Also, NH₃ reacts with HCl producing NH₄⁺. Thus, addition of<em> 0.12 mol HCl</em> will produce NH₄⁺. 0.25mol HCl consume all NH₃.
Answer:

Explanation:
Hello,
In this case, the first step is to compute the number of moles of potassium phosphate in 20.0 mL (0.020L) of the 0.015-M (mol/L) solution as shown below:

Thus, these moles correspond to potassium phosphate moles, which molecular formula is K₃PO₄, therefore, one mole of this compound contains three moles of potassium ions as it has three as its subscript in the formula. Thereby, the moles of potassium ions result in:

Best regards.