A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Lavoisier is known as the “Father of Modern Chemistry” or the “Father of Chemistry”.
He is famous for isolating oxygen and establishing the law of conservation of mass.
Answer:
H₃PO₄ → 3H⁺ + PO₄³⁻
CaSO₄ → Ca²⁺ + SO₄²⁻
b. CaCl₂
Explanation:
When H₃PO₄ is dissolved in water, there are produced the H⁺ and PO₄³⁻ ions. The equation is:
H₃PO₄ → 3H⁺ + PO₄³⁻
In the same way, CaSO₄ is dissolved in:
CaSO₄ → Ca²⁺ + SO₄²⁻
b. Now, in a reaction of an acid (HCl) and a base (Ca(OH)₂), water, H₂O and a salt are produced:
2 HCl + Ca(OH)₂ → 2H₂O + Salt
The ions that are not present in the reaction are Cl⁻ and Ca²⁺, the salt is CaCl₂ and the balanced reaction is:
2 HCl + Ca(OH)₂ → 2H₂O + CaCl₂