Answer:
<u>Oxidation state of Mn = +4</u>
Explanation:
Atomic mass of Mn = 55g/mol
From Faraday's law of electrolysis,
Electrochemical equivalent =
i.e Z = = = 0.0001424 g/C
But Equivalent weight, E = atomic mass ÷ valency = Z × 96,485
⇒ = 0.0001424 × 96,485
<u>∴ Valency of Mn = +4</u>
Answer:
Stronger
Greater
Higher
Explanation:
Molecules are held together by intermolecular forces. These are forces that act between molecules in a particular state matter. Intermolecular forces depend on the nature of the molecule.
For polar molecules, the intermolecular forces are stronger thus it takes more energy to separate them leading to a higher boiling point of polar molecules irrespective of their molecular mass.
Answer:
5 atoms
Explanation:
According to the law of conservation of mass, "matter is neither created nor destroyed in the cause of a chemical reaction".
We finish with what we start with in a chemical reaction. Although new species might form, the number of atoms on both sides of the expression will still be maintained.
All chemical reactions obey this law of conservation.
Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.
Answer : The limiting reagent is
Solution : Given,
Moles of methane = 2.8 moles
Moles of = 5 moles
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
From the balanced reaction we conclude that
As, 2 mole of react with 1 mole of
So, 5 moles of react with moles of
From this we conclude that, is an excess reagent because the given moles are greater than the required moles and is a limiting reagent and it limits the formation of product.
Hence, the limiting reagent is