Answer:
Option B. The distance between the objects in Figure A is shorter than the distance between the objects in Figure B.
Explanation:
The force of attraction between two masses is given by the following equation:
F = GM₁M₂ / r²
Where:
F => is the force of attraction
M₁ and M₂ => are the masses of the two objects
G => is the gravitational constant.
r => is the distance between the two objects
From the above formula,
The force of attraction (F) is directly proportional to the product of the two masses and inversely proportional to the square of their apart.
This implies that:
1. An increase in the masses of the object will bring about an increase in the force of attraction and a decrease in the masses will leads to a decrease in the force of attraction.
2. An increase in the distance between the two masses will leads to a decrease in the force of attraction and a decrease in the distance between the two masses will lead to an increase in the force of attraction.
Considering the options given in the question above, option B gives the correct answer to the question.
Answer:
(D) parasite........................
Answer:
F = 0.112 N
Explanation:
To find the magnitude of magnetic force on the wire, you use the following formula:
(1)
L: length of the wire = 200cm = 0.2m
i: current in the wire = 30 A
B: magnitude of the magnetic field = 0.055 T
θ: angle between the directions of L and B = 20°
You replace the values of L, i, B and θ in the equation (1):

hence, the magnetic force on teh wire is 0.112N
Explanation:
Below is an attachment containing the solution.
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m