Answer:
T=+1.133N
Explanation:
Tension and weight are forces that have opposite directions
Weight is negative (downward)
W=m*g= 0.11kg*(-9.8m/s^2)
W= -1.078N
Tension is possitive (upward)
The total force will be the sum of both (the difference taking in consideration the direction)
Ft= T+W
Also the total force is the product of the mass due to acceleration:
Ft=m*a
Ft= +0.11kg*0.5m/s^2
Ft=+0.055N (upward)
Tension will be the difference between Ft and W:
T= Ft-W
T=+0.055N-(-1.078N)
T=+1.133N
24N is the answer
You would need to multiply 8 until you get to a number.
Answer:
Option d
Explanation:
When we throw an object in the upward direction, we provide it with certain initial velocity due to which it covers a certain distance up to the maximum height.
While the object is moving in the upward direction, its velocity keeps on reducing due to the acceleration due to gravity which acts vertically downwards in the opposite direction thus reducing its velocity.
So, the maximum height attained by the object is the point where this upward velocity of the body becomes zero and after that the object starts to fall down.
Answer:
- Power requirement <u>P</u> for the banner is found to be 30.62 W
- Power requirement <u>P</u> for the solid flat plate is found to be 653.225 W
- Answer for part(c) is explained below in the explanation section and can be summarized as: The main difference between the drags and power requirements of the two objects of same size was due to their significantly different drag-coefficients. The <em>Cd </em>for banner was given, whereas the <em>Cd </em>for a flat plate is generally found to be around <em><u>1.28</u></em><em> </em>which is the value we used in our calculations that resulted in a huge increase of power to tow the flat plate
- Power requirement <u>P</u> for the smooth spherical balloon was found to be 40.08 W
Explanation:
First of all we will establish variables and equations known that are known to us to solve this question. Since we are given the velocity of the airplane:
- v = velocity of airplane i.e. 150 km/hr. To convert it into m/s we will divide it by 3.6 which gives us 41.66 m/s
- The density of air at s.t.p (standard temperature pressure) is given as d = 1.225 kg / m^3
- The power can be determined this equation: P = F . v, where F represents <em>the drag-force</em> that we will need to determine and v represents the<em> velocity of the airplane</em>
- The equation to determine drag-force is:

In the drag-force equation Cd represents the c<em>o-efficient of drag</em> and A represents the <em>frontal area of the banner/plate/balloon (the object being towed)</em>
Frontal area A of the banner is : 25 x 0.8 = 20 m^2
<u>Part a)</u> We will plug in in the values of Cd, d, A in the drag-force equation i.e. Fd = <em>1/2 * 0.06* 1.225 * 20</em> = 0.735 N. Now to find the power P we will use P = F . v i.e.<em> 0.735 * 41.66</em> = <u><em>30.62 W</em></u>
<em></em>
<u>Part b) </u>For this part the only thing that has fundamentally changed is the drag-coefficient Cd since it's now of a solid flat plate and not a banner. The drag-coefficient of a flat plate is approximately given as : Cd_fp = 1.28
Now we will plug-in our values into the same equations as above to determine drag-force and then power. i.e. Fd = <em>1/2 * 1.28 * 1.225 * 20</em> = 15.68 N. Using Fd to determine power, P = 15.68 * 41.66 = <u><em>653.225 W</em></u>
<u><em></em></u>
<u>Part c)</u> The main reason for such a huge power difference between two objects of same size was due to their differing drag-coefficients, as drag-coefficients are generally large for objects that are not of a streamlined shape and leave a large wake (a zone of low air pressure behind them). The flat plate being solid had a large Cd where as the banner had a considerably low Cd and therefore a much lower power consumption
<u>Part d)</u> The power of a smooth sphere can be calculated in the same manner as the above two. We just have to look up the Cd of a smooth sphere which is found to be around 0.5 i.e. Cd_s = 0.5. Area of sphere A is given as : <em>pi* r^2 (r = d / 2).</em> Now using the same method as above:
Fd = 1/2 * 0.5 * 3.14 * 1.225 = 0.962 N
P = 0.962 * 41.66 = <u><em>40.08 W</em></u>
Since energy cannot be created nor destroyed, the change in energy of the electron must be equal to the energy of the emitted photon.
The energy of the emitted photon is given by:

where
h is the Planck constant
f is the photon frequency
Substituting

, we find

This is the energy given to the emitted photon; it means this is also equal to the energy lost by the electron in the transition, so the variation of energy of the electron will have a negative sign (because the electron is losing energy by decaying from an excited state, with higher energy, to the ground state, with lower energy)