Answer:
Step-by-step explanation:
Represent the length of one side of the base be s and the height by h. Then the volume of the box is V = s^2*h; this is to be maximized.
The constraints are as follows: 2s + h = 114 in. Solving for h, we get 114 - 2s = h.
Substituting 114 - 2s for h in the volume formula, we obtain:
V = s^2*(114 - 2s), or V = 114s^2 - 2s^3, or V = 2*(s^2)(57 - s)
This is to be maximized. To accomplish this, find the first derivative of this formula for V, set the result equal to 0 and solve for s:
dV
----- = 2[(s^2)(-1) + (57 - s)(2s)] = 0 = 2s^2(-1) + 114s - 2s^2
ds
Simplifying this, we get dV/ds = -4s^2 + 114s = 0. Then either s = 28.5 or s = 0.
Then the area of the base is 28.5^2 in^2 and the height is 114 - 2(28.5) = 57 in
and the volume is V = s^2(h) = 46,298.25 in^3
Answer:
the graph one is G and the second one is C hope this helps
Answer:
A.
Step-by-step explanation:
x - 9 = 0
+ 9 + 9
---------------
x = 9
Answer:
y = root under 24 (evaluate it if necessary)
or y = 2 root 6
Step-by-step explanation:
Let the reference angle be x
for the triangle in left,
b = 6-4 = 2
Now,
taking x as refrence angle,
cosx = b/h
or, cosx = 2/h
again,
for the bigger triangle,
taking x as reference angle,
cosx = b/h
or, cosx = b/6
As we can see base of bigger triangle is equal to hypotenuse of triangle at the left,
Let's suppose its a
so, cosx = a/6 = 2/a
now,
a/6 = 2/a
or, a² = 12
now,
for bigger triangle, using pythagoras theorem,
h² = p²+b²
or, 6² = y² + a²
or, 36 = y² + 12
or, y² = 24
so, y = root under 24
Answer:
Account A: Decreasing at 8 % per year
Account B: Decreasing at 10.00 % per year
Account B shows the greater percentage change
Step-by-step explanation:
Part A: Percent change from exponential formula
f(x) = 9628(0.92)ˣ
The general formula for an exponential function is
y = ab^x, where
b = the base of the exponential function.
if b < 1, we have an exponential decay function.
ƒ(x) decreases as x increases.
Account A is decreasing each year.
We can rewrite the formula for an exponential decay function as:
y = a(1 – b)ˣ, where
1 – b = the decay factor
b = the percent change in decimal form
If we compare the two formulas, we find
0.92 = 1 - b
b = 1 - 0.92 = 0.08 = 8 %
The account is decreasing at an annual rate of 8 %.The account is decreasing at an annual rate of 10.00 %.
Account B recorded a greater percentage change in the amount of money over the previous year.