The correct answer is 70mm
First, you should solve for

, which equals

. Now, solve the integral of

=

, to get that

. You can check this by taking the integral of what you got. Now by the Fundamental Theorem
![\int\limits^2_0 {4x} \, dx=[2x^2] ^{2}_{0}=2(2)^{2}-2(0)^2=8](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E2_0%20%7B4x%7D%20%5C%2C%20dx%3D%5B2x%5E2%5D%20%5E%7B2%7D_%7B0%7D%3D2%282%29%5E%7B2%7D-2%280%29%5E2%3D8)
.
This should be the answer to your question, if I understood what you were asking correctly.
Answer: Probability is 0.00205 = 0.205%
Step-by-step explanation: P(rain) = 0.71, P(no rain) = 0.29.
P(no rain in 5 days)= 0.29·0.29·0.29·0.29·0.29= 0.00205
Answer:
$570
Step-by-step explanation:
If 50% of the price is $285, all you have to do is mulipy 285 by 2. This would give you the answer of $570 as the orignal price of the washing machine.
Answer: The amount of salt in the tank after 8 minutes is 36.52 pounds.
Step-by-step explanation:
Salt in the tank is modelled by the Principle of Mass Conservation, which states:
(Salt mass rate per unit time to the tank) - (Salt mass per unit time from the tank) = (Salt accumulation rate of the tank)
Flow is measured as the product of salt concentration and flow. A well stirred mixture means that salt concentrations within tank and in the output mass flow are the same. Inflow salt concentration remains constant. Hence:

By expanding the previous equation:

The tank capacity and capacity rate of change given in gallons and gallons per minute are, respectivelly:

Since there is no accumulation within the tank, expression is simplified to this:

By rearranging the expression, it is noticed the presence of a First-Order Non-Homogeneous Linear Ordinary Differential Equation:
, where
.

The solution of this equation is:

The salt concentration after 8 minutes is:

The instantaneous amount of salt in the tank is: